This study examined whether oxidative DNA damage and its repair system contribute to the occurrence of diabetes in an experimental rat model. The changed morphological findings of the 8-hydroxydeoxyguanosine (8-OHdG) and 8-oxoG-DNA glycosylase (OGG1) were examined in the pancreatic islets in streptozotocin-induced diabetic rats (60 mg/kg, i.p.). The patterns of immunolocalization were mainly observed in the periphery of the normal pancreatic islet: 8-OHdG in the nucleus and OGG1 in the cytoplasm. The altered immunolocalization of 8-OHdG and OGG1 were greatest in the first hours after streptozotocin injection, and then declined in parallel with the morphological observations of pancreatic beta cell destruction. These results suggested that increased oxidative DNA damage might play a role as the inducer of diabetes and that OGG1 may not successfully mediate DNA repair in streptozotocin-induced diabetic rat pancreas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acthis.2008.05.008DOI Listing

Publication Analysis

Top Keywords

streptozotocin-induced diabetic
12
immunolocalization 8-ohdg
8
8-ohdg ogg1
8
pancreatic islets
8
islets streptozotocin-induced
8
diabetic rats
8
oxidative dna
8
dna damage
8
ogg1
5
pancreatic
4

Similar Publications

miR378a-3p in serum extracellular vesicles is associated with pancreatic beta-cell mass in diabetic states.

Biochem Biophys Res Commun

January 2025

Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan. Electronic address:

The condition in which the insulin secretory ability of pancreatic β-cells decreases in diabetes is extremely important, but there are currently no biomarkers that reflect pancreatic β-cell failure. Therefore, we conducted a search for biomarkers, using pancreatic β-cell-specific 3-Phosphoinositide-dependent protein kinase 1 (PDK1) knockout mice, which develop severe hyperglycemia due to a decrease in pancreatic β-cell mass without insulin resistance. The analysis was performed in young mice when metabolic abnormalities were not yet apparent.

View Article and Find Full Text PDF

The herbal extracts of four traditional plants; namely leaves, fruits leaves, and seeds, were identified for their main constituents using UHPLC/QTOF-MS/MS. Then, a pharmacology-based analysis and molecular docking verification were established targeting the evaluation of each individual herbal extract for their antidiabetic/anti-obesity potential besides their safety. Streptozotocin-induced diabetic rats were used to evaluate antiobesity and insulinotropic effects against insulin (10 U/Kg, IP) and metformin (100 mg/Kg, per oral) as standard regimens.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Polyphenolic Hispolon Derived from Medicinal Mushrooms of the and Genera Promotes Wound Healing in Hyperglycemia-Induced Impairments.

Nutrients

January 2025

Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.

: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!