One of the factors limiting the use of DNA microarray technology for the detection of pathogenic organisms from clinical and environmental matrices has been inadequate assay sensitivity. To assess the effectiveness of post-hybridization secondary detection steps to enhance the sensitivity of DNA microarray-based pathogen detection, we evaluated a panel of 11 commercial and novel hybridization detection and signal amplification methods (direct labeling, indirect aminoallyl labeling, antibody, DNA dendrimers, viral particles, internally fluorescent nanoparticles, tyramide signal amplification, resonance light scattering nanoparticles and quantum dots) using a multiplex PCR and spotted long oligonucleotide microarray for Vibrio cholerae. Quantitative parameters such as sensitivity, signal intensity, background, assay complexity, time and cost were assessed and provide comparative criteria to be considered for DNA microarray experimental design. While the most important parameter is likely to vary based on the assay, when weighted equally, the findings suggest that recognition element- and dye-functionalized viral particles provide the most attractive option for microarray detection and signal amplification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcp.2008.07.002DOI Listing

Publication Analysis

Top Keywords

signal amplification
16
detection signal
12
amplification methods
8
dna microarray
8
viral particles
8
signal
5
dna
5
detection
5
comparison detection
4
amplification
4

Similar Publications

A novel electrochemiluminescence sensor based on NiCo NCs@CN QDs nanocomposites with poly-L-cysteine as co-reaction accelerator for ultrasensitive detection of vitamin K.

Food Chem

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, PR China; Research Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, No.403 Nanchang Road, Urumqi, Xinjiang 830091, PR China. Electronic address:

Article Synopsis
  • A new eco-friendly electrochemiluminescence (ECL) sensor using carbon quantum dots (CN QDs) was developed for highly sensitive detection of vitamin K (VK).
  • The sensor combined nickel-cobalt nanocages (NiCo NCs) with CN QDs, enhancing luminescent properties and allowing for efficient signal amplification when applied to a poly-L-cysteine film.
  • It demonstrated a detection range for VK between 1.0 × 10⁻⁸ to 5.0 × 10⁻⁴ mol/L, with a low limit of detection at 1.65 × 10⁻⁹ mol/L, and showed effective recoveries in food samples, indicating its practical application.
View Article and Find Full Text PDF

Magnetic graphene-enhanced exonuclease III assisted amplification strategy driven carbon nanozyme for tri-mode detection of Escherichia coli O157:H7.

Food Chem

January 2025

School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. Electronic address:

Ultra-precision point-of-care detection of Escherichia coli O157:H7 in foods is an important issue. Here, the detection sensitivity was improved by a signal cascade amplification strategy synergised by exonuclease III assisted isothermal amplification and reverse magnetic strategy. The double-stranded DNA formed by the aptamer and the target DNA as a sensing switch, avoiding the complex process of specific nucleic acid extraction.

View Article and Find Full Text PDF

Engineering Acid-Promoted Two-Photon Ratiometric Nanoprobes for Evaluating HClO in Lysosomes and Inflammatory Bowel Disease.

ACS Appl Mater Interfaces

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.

View Article and Find Full Text PDF

An FPGA-Based SiNW-FET Biosensing System for Real-Time Viral Detection: Hardware Amplification and 1D CNN for Adaptive Noise Reduction.

Sensors (Basel)

January 2025

Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.

Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.

View Article and Find Full Text PDF

Here we describe the synthesis and evaluation of a molecular corrosion sensor that can be applied in situ in aerospace coatings, then used to detect corrosion after the coating has been applied. A pH-sensitive molecule, 4-mercaptopyridin (4-MP), is attached to a gold nanoparticle to allow surface-enhanced Raman-scattering (SERS) for signal amplification. These SERS nanoparticles, when combined with an appropriate micron-sized carrier system, are incorporated directly into an MIL-SPEC coating and used to monitor the process onset and progression of corrosion using pH changes occurring at the metal-coating interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!