Proline-alanine-rich Ste20-related kinase (PASK, also referred to as SPAK) has been linked to ion transport regulation. Here, we report two novel activities of PASK: binding to tubulin and microtubules and the promotion of microtubule assembly. Tubulin binding assay showed that full-length PASK and its kinase domain bound to purified tubulin whereas the N-terminal or C-terminal non-catalytic domains of PASK did not. The full-length PASK and its kinase domain were sedimented with paclitaxel-stabilized microtubules by ultracentrifugation. These results indicate that the kinase domain of PASK can interact directly with both microtubules and soluble tubulin in vitro. Truncated PASK lacking the N-terminal non-catalytic domain promoted microtubule assembly at a subcritical concentration of purified tubulin. FLAG-PASK expressed in COS-7 cells translocated to the cytoskeleton when the cells were stimulated with hypertonic sodium chloride, and stabilized microtubules against depolymerization by nocodazole. Our findings suggest that PASK may regulate the cytoskeleton by modulating microtubule stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2008.07.013DOI Listing

Publication Analysis

Top Keywords

kinase domain
12
pask
9
proline-alanine-rich ste20-related
8
ste20-related kinase
8
tubulin microtubules
8
microtubule assembly
8
full-length pask
8
pask kinase
8
purified tubulin
8
tubulin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!