Thirty-five novel substituted imidazolyl methylene biphenyls have been synthesized as CYP17 inhibitors for the potential treatment of prostate cancer. Their activities have been tested with recombinant human CYP17 expressed in Escherichia coli. Promising compounds were tested for selectivity against CYP11B1, CYP11B2, and hepatic CYP enzymes 3A4, 1A2, 2B6 and 2D6. The core rigidified compounds (30-35) were the most active ones, being much more potent than Ketoconazole and reaching the activity of Abiraterone. However, they were not very selective. Another rather potent and more selective inhibitor (compound 23, IC(50)=345 nM) was further examined in rats regarding plasma testosterone levels and pharmacokinetic properties. Compared to the reference Abiraterone, 23 was more active in vivo, showed a longer plasma half-life (10h) and a higher bioavailability. Using our CYP17 homology protein model, docking studies with selected compounds were performed to study possible interactions between inhibitors and amino acid residues of the active site.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2008.07.011DOI Listing

Publication Analysis

Top Keywords

synthesis biological
4
biological evaluation
4
evaluation molecular
4
molecular modeling
4
modeling studies
4
studies methylene
4
methylene imidazole
4
imidazole substituted
4
substituted biaryls
4
biaryls inhibitors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!