Erythrocyte-encapsulated antibiotics have the potential to provide an effective therapy against intracellular pathogens. The advantages over the administration of free antibiotics include a lower systemic dose, decreased toxicity, a sustained delivery of the antibiotic at higher concentrations to the intracellular site of pathogen replication, and increased efficacy. In this study, the encapsulation of amikacin by human carrier erythrocytes prepared using a hypo-osmotic dialysis was investigated. The effects of the initial amikacin dialysis concentration and hypo-osmotic dialysis time on the encapsulation efficiency of amikacin were determined, and the osmotic fragility and hematologic parameters of amikacin-loaded carrier erythrocytes were measured. The efficiency of amikacin entrapment by carrier erythrocytes was dependent on the initial dialysis concentration of the drug. Statistically significant differences in the osmotic fragility profiles between control and carrier erythrocytes were observed, which were dependent on the hypo-osmotic dialysis time and on the dialysis concentration of amikacin. Mean hematologic parameters were evaluated and compared with unloaded, native erythrocytes; the mean corpuscular volume (MCV) of amikacin-loaded carrier erythrocytes was statistically significant smaller. Amikacin demonstrated a sustained release from loaded erythrocytes over a 48-h period, which suggests a potential use of the erythrocyte as a slow systemic-release system for antibiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trsl.2008.05.008 | DOI Listing |
Front Mol Biosci
December 2024
Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.
Introduction: Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the HBB gene, which encodes the beta-globin subunit of hemoglobin. This mutation leads to the production of abnormal hemoglobin S (HbS), causing red blood cells to deform into a sickle shape. These deformed cells can block blood flow, leading to complications like chronic hemolysis, anemia, severe pain episodes, and organ damage.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou 362000, Fujian Province, China.
Objective: To analyze the application value of MCV, MCH and HbA in screening for thalassemia in the population of childbearing age in Quanzhou area, and to determine the optimal screening cut-off value of relevant indicators in this area.
Methods: 2 725 couples of childbearing age were included in the study and underwent routine blood test, capillary hemoglobin electrophoresis, and α and β thalassemia gene test. Statistical methods were used to analyze the distribution of thalassemia genotypes, and compare the performance of MCV, MCH, and HbA in screening various types of thalassemia.
Int J Pharm
December 2024
School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disease that is significantly characterized by cognitive and memory impairments, which worsen significantly with age. In the late stages of AD, metal ion disorders and an imbalance of reactive oxygen species (ROS) levels occur in the brain microenvironment, which causes abnormal aggregation of β-amyloid (Aβ), leading to a significant worsening of the AD symptoms. Therefore, we designed a composite nanomaterial of macrophage membranes-encapsulated Prussian blue nanoparticles (PB NPs/MM).
View Article and Find Full Text PDFDiscov Nano
December 2024
Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India.
Several approaches have been utilised to deliver therapeutic nanoparticles inside the brain but rendered by certain limitation such as active efflux, non-stability, toxicity of the nanocarrier, transport, physicochemical properties and many more. In this context use of biocompatible nano carriers is currently investigated. We herein present the hypothesis that the nucleoside-lipid based conjugates (nucleolipids) which are biocompatible in nature and have molecular recognition can be tuned for improved permeation across blood-brain barrier (BBB).
View Article and Find Full Text PDFAutophagy
December 2024
Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium.
Renal proximal tubules are a primary site of injury in metabolic diseases. In obese patients and animal models, proximal tubular epithelial cells (PTECs) display dysregulated lipid metabolism, organelle dysfunctions, and oxidative stress that contribute to interstitial inflammation, fibrosis and ultimately end-stage renal failure. Our research group previously pointed out AMP-activated protein kinase (AMPK) decline as a driver of obesity-induced renal disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!