Apoptosis and autophagy are main mechanisms of neuronal death involved in prion diseases. Serum deprivation can induce both pathways to cell death in various types of cells. To investigate whether PrP(C) is involved in autophagy pathway, we analyzed the level of microtubule-associated protein 1 light chain 3 (LC3), an autophagy marker, by monitoring the conversion from LC3-I into LC3-II in Zürich I Prnp(-/-) hippocampal neuronal cells. We found that the expression level of LC3-II was increased in Prnp(-/-) compared to wild-type cells under serum deprivation. In electron microscopy, increased accumulation of autophagosomes in Prnp(-/-) cells was correlated with the increase in levels of LC3-II. Interestingly, this up-regulated autophagic activity was retarded by the introduction of PrP(C) into Prnp(-/-) cells but not by the introduction of PrP(C) lacking octapeptide repeat region. Thus, the octapeptide repeat region of PrP(C) may play a pivotal role in the control of autophagy exhibited by PrP(C) in neuronal cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcn.2008.07.003 | DOI Listing |
Front Mol Neurosci
January 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States.
The Kv3.2 subfamily of voltage activated potassium channels encoded by the gene is abundantly expressed in neurons that fire trains of fast action potentials that are a major source of cortical inhibition. Gain-of-function (GOF) pathogenic variants in and , encoding Kv3.
View Article and Find Full Text PDFFront Comput Neurosci
January 2025
Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany.
Introduction: The hippocampal formation exhibits complex and context-dependent activity patterns and dynamics, e.g., place cell activity during spatial navigation in rodents or remapping of place fields when the animal switches between contexts.
View Article and Find Full Text PDFBrain Behav Immun Health
December 2024
James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic. After the success of therapeutics and worldwide vaccination, the long-term sequelae of SARS-CoV-2 infections are yet to be determined. Common symptoms of COVID-19 include the loss of taste and smell, suggesting SARS-CoV-2 infection has a potentially detrimental effect on neurons within the olfactory/taste pathways, with direct access to the central nervous system (CNS).
View Article and Find Full Text PDFFront Neurosci
January 2025
Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
The vagus nerve (VN) is the primary parasympathetic nerve, providing two-way communication between the body and brain through a network of afferent and efferent fibers. Evidence suggests that altered VN signaling is linked to changes in the neuroimmune system, including microglia. Dysfunction of microglia, the resident innate immune cells of the brain, is associated with various neurodevelopmental disorders, including schizophrenia, attention deficit hyperactive disorder (ADHD), autism spectrum disorder (ASD), and epilepsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!