A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Liver Kupffer cells control the magnitude of the inflammatory response in the injured brain and spinal cord. | LitMetric

The CNS inflammatory response is regulated by hepatic chemokine synthesis, which promotes leukocytosis and facilitates leukocyte recruitment to the site of injury. To understand the role of the individual cell populations in the liver during the hepatic response to acute brain injury, we selectively depleted Kupffer cells (KC), using clodronate-filled liposomes, and assessed the inflammatory response following a microinjection of IL-1beta into the rat brain or after a compression injury in the spinal cord. We show by immunohistochemistry that KC depletion reduces neutrophil infiltration into the IL-1beta-injected brain by 70% and by 50% into the contusion-injured spinal cord. qRT-PCR analysis of hepatic chemokine mRNA expression showed that chemokine expression in the liver after brain injury is not restricted to a single cell population. In non-depleted rats, CXCL-10, IL-1beta, CCL-2, and MIP-1alpha mRNAs were increased up to sixfold more than in KC depleted rats. However, CXCL-1 and MIP-1beta were not significantly affected by KC depletion. The reduction in chemokine mRNA expression by the liver was not associated with decreased neutrophil mobilisation as might have been expected. These findings suggest that in response to CNS injury, KC mediated mechanisms are responsible for increasing neutrophil entry to the site of CNS injury, but that neutrophil mobilisation is dependent on other non-KC mediated events. However, the suppression of KC activity may prevent secondary damage after acute brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2008.06.074DOI Listing

Publication Analysis

Top Keywords

inflammatory response
12
spinal cord
12
brain injury
12
kupffer cells
8
hepatic chemokine
8
acute brain
8
chemokine mrna
8
mrna expression
8
expression liver
8
neutrophil mobilisation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!