A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A noncommercial polymerase chain reaction-based method to approach one hundred percent recombinant clone selection efficiency. | LitMetric

Molecular cloning is an important procedure in molecular biology, but this is often a rate-limiting step and can be very time-consuming, possibly due to low ligation efficiency. Here, we describe a simple polymerase chain reaction (PCR)-based strategy to approach 100% selection efficiency. The post-ligation mixture containing the recombinant was subjected to insert-specific primer-mediated PCR amplification using a high-fidelity DNA Pfu polymerase generating a plasmid containing staggered nicks. The PCR mixture was then digested with endonuclease DpnI, which digests the methylated and hemimethylated parental DNA template. The nicked vector was transformed into XL1 blue supercompetent cells where the nicks were repaired, thus amplifying and selecting only the newly amplified recombinant clones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2008.07.003DOI Listing

Publication Analysis

Top Keywords

polymerase chain
8
selection efficiency
8
noncommercial polymerase
4
chain reaction-based
4
reaction-based method
4
method approach
4
approach percent
4
percent recombinant
4
recombinant clone
4
clone selection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!