Glutamate is an important excitatory neurotransmitter that stimulates the release of gonadotrophin-releasing hormone (GnRH) and participates in the generation of the luteinising hormone (LH) surge. To determine the mechanisms of action of glutamate and possible changes in the glutamatergic input to GnRH neurones during reproductive ageing, we measured the expression and activation of the mandatory N-methyl-D-aspartate receptor subunit-1 (NMDAR1) in GnRH neurones of young and middle-aged mice prior to and during a steroid-induced LH surge. The results show that, in young animals, approximately 55% of all GnRH neurones contain immunoreactive NMDAR1 protein and this percentage does not change during the day of the LH surge. In approximately 10% of the GnRH neurones, NMDA receptor protein is phosphorylated at Ser 890 prior to the surge, whereas, in approximately 55% of the GnRH neurones, NMDAR1 subunits are phosphorylated during the LH surge. Activation of NMDAR1 receptor subunits stimulates the calcium-calmodulin-kinase IV (CaMK IV). pathway, which leads to the translocation of CaMK IV into the nucleus where this enzyme can phosphorylate the cAMP response element-binding protein (CREB) and CREB-binding protein. We show that, in young animals, approximately 20% of the GnRH neurones contain CaMK IV in their nuclei 7 h prior to the LH surge; this percentage increases to 60% at the beginning of the surge and decreases to approximately 40% some 2 h into the LH surge. In middle-aged animals, approximately 25% of the GnRH neurones contain NMDAR1 protein and only 10% of the GnRH neurones contain phosphorylated NMDAR1 protein prior to and during the surge; however 2 h after the peak of the surge, 20% of the GnRH neurones contain phosphorylated NMDAR1 subunits. Similarly, 20% of GnRH neurones contain nuclear CaMK IV and this percentage does not change during the day of the LH surge. The results suggest that, in the young animal, glutamatergic innervation of GnRH neurones during the LH surge causes the activation and phosphorylation of NMDAR1 receptor subunits which results in the translocation of CaMK IV into the nucleus. However, both, the expression and activation of NMDAR1 receptor subunits are greatly reduced in the middle-aged animals, which could result in the absence of LH surges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2826.2008.01775.x | DOI Listing |
Vitam Horm
January 2025
Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar pradesh, India.
The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals.
View Article and Find Full Text PDFJ Reprod Dev
January 2025
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
Hypothalamic arcuate (ARC) kisspeptin neurons are considered the gonadotropin-releasing hormone pulse generator in rats. In virgin rats, the expression of the ARC kisspeptin gene (Kiss1) is repressed by proestrous levels of estradiol-17β (high E2) but not by diestrous levels of E2 (low E2). In lactating rats, ARC Kiss1 expression is repressed by low E2 during late lactation.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
January 2025
Department of Paediatrics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Objectives: Kisspeptin plays a major role in the onset of puberty by stimulating the gonadotropin-releasing hormone (GnRH) neurons. The aim of this study was to investigate whether GnRH inhibits kisspeptin secretion via a negative feedback mechanism and potential associations between kisspeptin levels and other hormones of importance for pubertal onset.
Methods: Thirteen girls with suspected central precocious puberty underwent a GnRH stimulation test twice in a randomized, placebo-controlled manner.
Mol Cell Endocrinol
January 2025
Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus. Electronic address:
Background And Aims: Puberty is a crucial developmental stage marked by the transition from childhood to adulthood, organized by complex hormonal signaling within the neuroendocrine system. The hypothalamus, a central region in this system, regulates pubertal functions through the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, essential in puberty control, release GnRH in a pulsatile manner, initiating the production of sex hormones.
View Article and Find Full Text PDFJ Endocr Soc
January 2025
Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil.
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!