Diversity oriented high-throughput screening of 1,3,4-oxadiazole modified chlorophenylureas and halogenobenzamides by HPLC with peptidomimetic calixarene-bonded stationary phases.

Curr Drug Discov Technol

Department of Pharmaco-Bromatology & Molecular Nutrition, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jagiellonska 13, Bydgoszcz, Poland.

Published: June 2008

Retention profiles in series of the neutral and highly hydrophobic 1,3,4-oxadiazoles containing chlorophenylurea and halogenobenzamide moiety and indicating analgesic activity were determined in the isocratic standard- and narrow-bore HPLC systems employing, respectively, various octadecylsilica and different calixarene bonded stationary phases. When acetonitrile - 2.65 mM phosphoric acid (55 : 45, %, v/v), pH* 3.25, mobile phase was applied retention of these compounds increased with decline of their overall hydrophobicity according to the general preference of more polar compounds by calixarene cavity in time of its non-specific host-guest supramolecular interactions with halogenated substances. The size of calixarene nanocavity and its upper-rim substitution did not change the observed retention order, resolution and selectivity of separation for oxadiazoles. Compared to the retention on the non-end-capped and the highly-end-capped octadecylsilica HPLC column a most improved separation of some regioisomers of halogenated 1,3,4-oxadiazoles were observed on both used calixarene-type HPLC supports. In addition, preliminary data on the self-assembled supramolecular crystal structure of exemplary 1,3,4-oxadiazolchlorophenylurea with cis-elongated conformation was reported and formation of the monovalent inclusion host-guest complexes between 1,3,4-oxadiazoles and each calixarene-type stationary phase was studied with molecular modelling MM+ and AM1 methods. The structural, isomeric and energetic factors leading to the hydrogen bond stabilized inclusion complexes between these species were considered and used for explanation of observed retention sequence and selectivity of 1,3,4-oxadiazoles separation in applied calixarene-based HPLC systems. All these data would be useful in future development of optimized procedures enabling encapsulation of 1,3,4-oxadiazolurea-type drugs with calixarenes.

Download full-text PDF

Source
http://dx.doi.org/10.2174/157016308784746238DOI Listing

Publication Analysis

Top Keywords

stationary phases
8
hplc systems
8
observed retention
8
hplc
5
retention
5
diversity oriented
4
oriented high-throughput
4
high-throughput screening
4
screening 134-oxadiazole
4
134-oxadiazole modified
4

Similar Publications

TBAT-Catalyzed Dioxasilinane Formation from Beta-Hydroxy Ketones.

Tetrahedron

February 2025

Department of Chemistry, Western Washington University, Bellingham, WA 98225 (USA).

Beta-hydroxy ketones can be reduced using a sequence of ruthenium-catalyzed silyl etherification followed by tetrabutylammonium fluoride (TBAF) promoted intramolecular hydrosilylation. Switching from TBAF to tetrabutylammonium difluorotriphenylsilicate (TBAT), even without first forming the silyl ether, gave cyclic dioxasilinane products. These somewhat sensitive compounds could be isolated pure by column chromatography using florisil as the stationary phase.

View Article and Find Full Text PDF

Bioelectrochemical systems (BESs) offer a sustainable method for chemical production, including the enhanced production of succinic acid. By combining fermentation with BES, it could be possible to achieve sustainable succinic acid production and CO fixation using . In literature, the potential application of BES is commonly associated with increased succinate yields, as it is expected to enhance the availability of NADH, thereby influencing the intracellular nicotinamide adenine dinucleotide (NADH/NAD) balance.

View Article and Find Full Text PDF

Preparation of novel chiral stationary phases based on chiral metal-organic cages enable extensive HPLC enantioseparation.

Anal Chim Acta

February 2025

Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing, 100081, China. Electronic address:

Background: The metal organic cages (MOCs) are an emerging type of porous material that has attracted considerable research interest due to their unique properties, including good stability and well-defined intrinsic cavities. The chiral MOCs with porous structures have broad application prospects in enantiomeric recognition and separation. However, there are almost no relevant reports on chiral MOCs as chiral stationary phases (CSPs) for enantioseparation by high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

Global climate change and rapid urbanization have increasingly intensified extreme rainfall events and surface runoff, posing significant challenges to urban hydrological security. Synergetic Grey-Green Infrastructure (SGGI) has been widely applied to enhance stormwater management in urban areas. However, current research primarily focused on optimizing and evaluating either grey infrastructure (GREI) or green infrastructure (GI) under single rainfall event, neglecting the non-stationary impacts of long-term climate change on infrastructure performance.

View Article and Find Full Text PDF

Despite having identical physicochemical properties, chiral molecules require effective separation techniques due to their distinct pharmacological effects. Polysaccharide-based chiral stationary phases (CSPs) are widely used for chiral separations in liquid chromatography; however, the mechanisms of chiral recognition are not well understood. This research explored the adsorption, retention, and chiral recognition mechanisms of three amylose-based CSPs: Chiralpak ID, IF, and IG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!