The MraY transferase is an integral membrane protein that catalyzes an essential step of peptidoglycan biosynthesis, namely the transfer of the phospho-N-acetylmuramoyl-pentapeptide motif onto the undecaprenyl phosphate carrier lipid. It belongs to a large superfamily of eukaryotic and prokaryotic prenyl sugar transferases. No 3D structure has been reported for any member of this superfamily, and to date MraY is the only protein that has been successfully purified to homogeneity. Nineteen polar residues located in the five cytoplasmic segments of MraY appeared as invariants in the sequences of MraY orthologues. A certain number of these invariant residues were found to be conserved in the whole superfamily. To assess the importance of these residues in the catalytic process, site-directed mutagenesis was performed using the Bacillus subtilis MraY as a model. Fourteen residues were shown to be essential for MraY activity by an in vivo functional complementation assay using a constructed conditional mraY mutant strain. The corresponding mutant proteins were purified and biochemically characterized. None of these mutations did significantly affect the binding of the nucleotidic and lipidic substrates, but the k cat was dramatically reduced in almost all cases. The important residues for activity therefore appeared to be distributed in all the cytoplasmic segments, indicating that these five regions contribute to the structure of the catalytic site. Our data show that the D98 residue that is invariant in the whole superfamily should be involved in the deprotonation of the lipid substrate during the catalytic process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi8006274 | DOI Listing |
Infection
November 2024
Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Purpose: To describe and characterize the evolutionary process of cross-resistance to ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam of a carbapenem-resistant Pseudomonas aeruginosa (CRPA) lineage isolated from a patient receiving two courses of ceftazidime/avibactam treatment.
Methods: The minimum inhibitory concentrations (MICs) of strains were determined by broth microdilution methods. The mutant genes were identified by the whole genome sequencing results.
Front Microbiol
September 2024
Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia.
Introduction: Bovine Genital Campylobacteriosis (BGC), caused by subsp. venerealis, is a sexually transmitted bacterium that significantly impacts cattle reproductive performance. However, current detection methods lack consistency and reliability due to the close genetic similarity between subsp.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
October 2024
Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
Ultrason Sonochem
October 2024
Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Engineering Research Center for Agro-Product Irradiation, Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan 430064, China. Electronic address:
Although thermosonication (TS) treatment has been widely used in food sterilization, the viable but non-culturable (VBNC) of bacteria with TS treatment has still concerned potential food safety and public health. The molecular mechanism of VBNC status of bacteria with TS treatment is not clearly known. Therefore, in this study, we used Shewanella putrefaciens, which was a common putrefactive bacteria in aquatic products, to study the VBNC state of bacteria with TS treatment.
View Article and Find Full Text PDFMar Drugs
June 2024
Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!