We showed, using the method of lysis of fibrin plates and five substrate proteins in a thin layer of agar gel, that inorganic orthophosphate (0.001-0.06 M) enhances by 50-250% the activatory functions of streptokinase, urokinase, and tissue plasminogen activator and, in general, by 1.2-12.0 times enhances protein lysis by trypsin, alpha-chymotrypsin, subtilisin, papain, bacterial metalloprotease, and even pepsin at a concentration < 4 mM. At higher concentrations, phosphate sharply inhibited pepsin activity and inhibited by 40-50% gelatin lysis by papain and gelatin (at a peak concentration) and casein lysis by metalloprotease. Inorganic pyrophosphate ions at concentrations of 10(-8)-10(-1) M enhanced the cleavage of a number of proteins by serine proteases and, at concentrations of 10(-5) -10(-3) M, the activities of pepsin, plasminogen tissue activator, and streptokinase by 100 and 40%, respectively. The pyrophosphate concentrations of > 10(-3) and >10(-4) M inhibited pepsin- and metalloprotease-induced lysis of virtually all proteins. ATP increased casein lysis by serine proteases, metalloprotease, and pepsin by 20-60% at concentration of 10(-3) M and by 30-260% at 10(-2) M concentration. At concentrations of 10-2 M, it inhibited the cleavage of some proteins by trypsin, chymotrypsin, papain, and metalloprotease by 20-100%, and, at concentrations of 10(-3) M, lysis of albumin with pepsin and other proteins (except for fibrinogen) by metalloprotease. A GTP concentration of 10(-7)-10(-2) M increased protein degradation by serine proteases, papain, and gelatin lysis by pepsin by 20-90%, whereas albumin lysis was inhibited by 40-70%. The presence of 10(-6)-10(-5) M GTP led to a slightly increased degradation of hemoglobin and casein by bacterial metalloprotease, while 10(-3) M GTP induced a drop in the activity of the metalloprotease by 20-50%. ADP could enhance gelatin lysis by trypsin, casein lysis by pepsin and papain, and inhibited metalloprotease activity by 20-100% (at 10(-3) M). Peculiarities of the effects of AMP and GD(M)P on gelatin lysis were found.

Download full-text PDF

Source
http://dx.doi.org/10.1134/s1068162008030163DOI Listing

Publication Analysis

Top Keywords

gelatin lysis
16
lysis
12
casein lysis
12
serine proteases
12
lysis trypsin
8
metalloprotease
8
bacterial metalloprotease
8
metalloprotease pepsin
8
papain gelatin
8
concentrations 10-3
8

Similar Publications

κ-carrageenan - Gelatin hydrogel embedding carvacrol loaded gold nanobipyramids for treating prostate cancer via fractionated photothermal-chemotherapy.

Int J Biol Macromol

December 2024

Center for Marine Integrated Bionics Technology, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea. Electronic address:

Conventional treatment of prostate cancer need more specificity, and higher efficiency. The present work is the first attempt to utilize hydrogel-loaded carvacrol-based chemotherapy with fractionated photothermal therapy (F-PTT) using a 635 nm laser for its treatment. Gold nanobipyramids (AuNBPs) were used as drug carrier and photosensitizer.

View Article and Find Full Text PDF

Phage Lytic Protein CHAPSH3b Encapsulated in Niosomes and Gelatine Films.

Microorganisms

January 2024

Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.

Antimicrobial resistance (AMR) has emerged as a global health challenge, sparking worldwide interest in exploring the antimicrobial potential of natural compounds as an alternative to conventional antibiotics. In recent years, one area of focus has been the utilization of bacteriophages and their derivative proteins. Specifically, phage lytic proteins, or endolysins, are specialized enzymes that induce bacterial cell lysis and can be efficiently produced and purified following overexpression in bacteria.

View Article and Find Full Text PDF

Aim and objective The study aimed to assess and evaluate the efficacy of glass ionomer modified with chitosan-reinforced gelatin microspheres on bone formation. Materials and methods  The study involved three groups: Group I comprised plain glass ionomer cement; Group II comprised glass ionomer cement/gelatin (70:30 wt%); in Group III, glass ionomer cement/gelatin/chitosan (70:30%) scaffold were made into discs; the gelatin microspheres were synthesized by oil emulsion method. The synthesized scaffold was subjected to the following in vitro testing, Instron Universal Testing Machine (UTM), U3000, (Instron Corporation, Norwood, Massachusetts, United States) to assess compressive strength, scanning electron microscope (SEM) examination, and biocompatibility testing using hemocompatibility assay.

View Article and Find Full Text PDF

Large quantities of sediments in urban sewer systems pose significant risk of pipe clogging and corrosion. Owing to their gel-like structure, sewer sediments have strong resistance to hydraulic shear stress. This study proposed a novel approach to weaken the erosion resistance of sewer sediments by destroying viscous gel-like biopolymers in sediments with low doses of calcium peroxide (CaO).

View Article and Find Full Text PDF

We report the feasibility of using gelatin hydrogel networks as the host for the in situ, environmentally friendly formation of well-dispersed zinc oxide nanoparticles (ZnONPs) and the evaluation of the antibacterial activity of the as-prepared composite hydrogels. The resulting composite hydrogels displayed remarkable biocompatibility and antibacterial activity as compared to those in previous studies, primarily attributed to the uniform distribution of the ZnONPs with sizes smaller than 15 nm within the hydrogel network. In addition, the composite hydrogels exhibited better thermal stability and mechanical properties as well as lower swelling ratios compared to the unloaded counterpart, which could be attributed to the non-covalent interactions between the in situ formed ZnONPs and polypeptide chains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!