ORBIT: a multiresolution framework for deformable registration of brain tumor images.

IEEE Trans Med Imaging

Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, 3600 Market Street, Philadelphia, PA 19104, USA.

Published: August 2008

A deformable registration method is proposed for registering a normal brain atlas with images of brain tumor patients. The registration is facilitated by first simulating the tumor mass effect in the normal atlas in order to create an atlas image that is as similar as possible to the patient's image. An optimization framework is used to optimize the location of tumor seed as well as other parameters of the tumor growth model, based on the pattern of deformation around the tumor region. In particular, the optimization is implemented in a multiresolution and hierarchical scheme, and it is accelerated by using a principal component analysis (PCA)-based model of tumor growth and mass effect, trained on a computationally more expensive biomechanical model. Validation on simulated and real images shows that the proposed registration framework, referred to as ORBIT (optimization of tumor parameters and registration of brain images with tumors), outperforms other available registration methods particularly for the regions close to the tumor, and it has the potential to assist in constructing statistical atlases from tumor-diseased brain images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832332PMC
http://dx.doi.org/10.1109/TMI.2008.916954DOI Listing

Publication Analysis

Top Keywords

tumor
9
deformable registration
8
registration brain
8
brain tumor
8
tumor growth
8
brain images
8
registration
6
brain
5
images
5
orbit multiresolution
4

Similar Publications

Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.

View Article and Find Full Text PDF

Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.

View Article and Find Full Text PDF

External Validation of a 5-Factor Risk Model for Breast Cancer-Related Lymphedema.

JAMA Netw Open

January 2025

Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

Importance: Secondary lymphedema is a common, harmful side effect of breast cancer treatment. Robust risk models that are externally validated are needed to facilitate clinical translation. A published risk model used 5 accessible clinical factors to predict the development of breast cancer-related lymphedema; this model included a patient's mammographic breast density as a novel predictive factor.

View Article and Find Full Text PDF

Purpose: Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared to tumors with lower RAS---RAF interaction.

View Article and Find Full Text PDF

Purpose: Renal medullary carcinoma (RMC) is a highly aggressive malignancy defined by the loss of the SMARCB1 tumor suppressor. It mainly affects young individuals of African descent with sickle cell trait, and it is resistant to conventional therapies used for other renal cell carcinomas. This study aimed to identify potential biomarkers for early detection and disease monitoring of RMC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!