Colorectal cancer (CRC) is one of the most frequent cancers in the Western world and represents a major health burden. CRC development is a multi-step process that spans 10-15years, thereby providing an opportunity for early detection and even prevention. As almost half of all patients undergoing surgery develop recurrent disease, surveillance is advocated, albeit with various means and intervals. Current screening and surveillance efforts have so far only had limited impact due to suboptimal compliance. Currently, CEA is the only biomarker in clinical use for CRC, but has suboptimal sensitivity and specificity. New and better biomarkers are therefore strongly needed. Non-invasive biomarkers may develop through the understanding of colorectal carcinogenesis. Three main pathways occur in CRC, including chromosomal instability (CIN), microsatellite instability (MSI) and epigenetic silencing through the CpG Island Methylator Phenotype (CIMP). These pathways have distinct clinical, pathological, and genetic characteristics, which can be used for molecular classification and comprehensive tumour profiling for improved diagnostics, prognosis and treatment in CRC. Molecular-biological research has advanced with the sequencing of the human genome and the availability of genomic and proteomic high-throughput technologies using different chip platforms, such as tissue microarrays, DNA microarrays, and mass spectrometry. This review aims to give an overview of the evolving biomarker concepts in CRC, with concerns on methods, and potential for clinical implications for the surgical oncologist.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.suronc.2008.06.006 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg 1790 AB, The Netherlands.
Heterocytes, specialized cells for nitrogen fixation in cyanobacteria, are surrounded by heterocyte glycolipids (HGs), which contribute to protection of the nitrogenase enzyme from oxygen. Diverse HGs preserve in the sediment and have been widely used as evidence of past nitrogen fixation, and structural variation has been suggested to preserve taxonomic information and reflect paleoenvironmental conditions. Here, by comprehensive HG identification and screening of HG biosynthetic gene clusters throughout cyanobacteria, we reconstruct the convergent evolutionary history of HG structure, in which different clades produce the same HGs.
View Article and Find Full Text PDFMicrob Genom
January 2025
Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, rebro University, rebro, Sweden.
National epidemiological investigations of microbial infections greatly benefit from the increased information gained by whole-genome sequencing (WGS) in combination with standardized approaches for data sharing and analysis. To evaluate the quality and accuracy of WGS data generated by different laboratories but analysed by joint pipelines to reach a national surveillance approach. A national methicillin-resistant (MRSA) collection of 20 strains was distributed to nine participating laboratories that performed in-house procedures for WGS.
View Article and Find Full Text PDFSyst Parasitol
January 2025
Pacific branch of the Federal State Budget Scientific Institution "Russian Federal Research Institute of Fisheries and Oceanography", 4 Alley Shevchenko, Vladivostok, Russian Federation, 690091.
Opistholecithum sandugaense n. g. n.
View Article and Find Full Text PDFMol Biol Rep
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.
Background: Paeonia lactiflora Pall., a member of Paeoniaceae family, is a medicinal herb widely used in traditional Chinese medicine. Chloroplasts are multifunctional organelles containing distinct genetic material.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411, Tehran, Iran.
In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!