Whole-genome sequencing is a powerful technique for obtaining the reference sequence information of multiple organisms. Its use can be dramatically expanded to rapidly identify genomic variations, which can be linked with phenotypes to obtain biological insights. We explored these potential applications using the emerging next-generation sequencing platform Solexa Genome Analyzer, and the well-characterized model bacterium Bacillus subtilis. Combining sequencing with experimental verification, we first improved the accuracy of the published sequence of the B. subtilis reference strain 168, then obtained sequences of multiple related laboratory strains and different isolates of each strain. This provides a framework for comparing the divergence between different laboratory strains and between their individual isolates. We also demonstrated the power of Solexa sequencing by using its results to predict a defect in the citrate signal transduction pathway of a common laboratory strain, which we verified experimentally. Finally, we examined the molecular nature of spontaneously generated mutations that suppress the growth defect caused by deletion of the stringent response mediator relA. Using whole-genome sequencing, we rapidly mapped these suppressor mutations to two small homologs of relA. Interestingly, stable suppressor strains had mutations in both genes, with each mutation alone partially relieving the relA growth defect. This supports an intriguing three-locus interaction module that is not easily identifiable through traditional suppressor mapping. We conclude that whole-genome sequencing can drastically accelerate the identification of suppressor mutations and complex genetic interactions, and it can be applied as a standard tool to investigate the genetic traits of model organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474695 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1000139 | DOI Listing |
Cancer Metastasis Rev
December 2024
Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia.
Homologous recombination deficiency (HRD) is considered a universal and effective sign of a tumor's sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. HRD diagnostics have undergone several stages of transformations: from detection of point mutations in HR-related genes and large regions with loss of heterozygosity detected using single-nucleotide polymorphism arrays to whole-genome signatures of single-nucleotide variants, large genomic rearrangements (LGRs), and copy number alterations. All these methods have their own advantages and limitations.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Gynecology, Obstetrics and Reproductive Health, Molecular Biology and Bioinformatics Laboratory, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.
Pediococcus pentosaceus is well known for its probiotic properties, including roles in improving health, antimicrobial production, and enhancing fermented food quality. This study aimed to comprehensively analyze the whole genome of P. pentosaceus MBBL6, isolated from healthy cow milk, to assess its probiotic and antimicrobial potentials.
View Article and Find Full Text PDFNeurogenetics
December 2024
Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
In most cases there is a single etiological factor causing neuromotor developmental delay and epilepsy while sometimes more than one gene may be involved. These include the autosomal recessive inherited CAMSAP1 gene, which is associated with cortical developmental malformations such as pachygyria and lissencephaly and the autosomal dominant inherited NBEA gene, which plays crucial roles in vesicle trafficking as well as synapse structure and function. Loss of function of both genes together is a well-known disease mechanism.
View Article and Find Full Text PDFHepatology
December 2024
Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Background And Aims: Hepatocellular carcinoma (HCC) recurrence is a major factor limiting long-time survival and the cause of most deaths in patients with HCC. However, molecular characterisation and potential therapeutic targets of recurrent HCC remain mostly unknown.
Approach And Results: We performed whole-exome sequencing (WES) in 63 matched primary and recurrent HCC tumours and combined the data with whole-genome sequencing (WGS) results in 43 paired samples from our previous study.
mSphere
December 2024
Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
The bacteria living in the human gut are essential for host health. Though the composition and metabolism of these bacteria are well described in both healthy hosts and those with intestinal disease, less is known about the metabolic activity of the gut bacteria prior to, and during, disease development-especially regarding gut bacterial replication. Here, we use a recently developed single-cell technique alongside existing metagenomics-based tools to identify, track, and quantify replicating gut bacteria both and in the dextran sodium sulfate (DSS) mouse model of colitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!