Background: Conventional tunnel positions for single-bundle (SB) transtibial anterior cruciate ligament (ACL) reconstruction are located in the posterolateral (PL) tibial footprint and the anteromedial (AM) femoral footprint, resulting in an anatomic mismatch graft that is more vertical than native fibers. This vertical mismatch position may significantly influence the ability of an ACL graft to stabilize the knee.

Hypothesis: Anatomic ACL fibers undergo a greater change in length during anterior translation and internal rotation than a conventional SB reconstruction from the PL tibial footprint to the AM femoral footprint.

Study Design: Controlled laboratory study.

Methods: The Praxim ACL Surgetics navigation system was used to acquire kinematic data during a flexion/extension cycle and to register all points within the ACL footprint from 5 fresh-frozen cadaveric knees. Virtual fibers were placed in the center of the AM and PL bundles as well as central and conventional SB positions. After transection of the ACL, the absolute length change and apparent strain of the fibers were computed for each knee during the Lachman and anterior drawer tests and internal rotation at 0 degrees and 30 degrees of flexion.

Results: Each of the anatomic fibers (AM, PL, and central) had more elongation and apparent strain than the conventional SB fiber during the Lachman maneuver. During the anterior drawer test, the AM and central (but not the PL) fibers lengthened significantly more and the AM had more apparent strain than the conventional SB fiber. During internal rotation at 0 degrees and 30 degrees of flexion, anatomic fibers elongated significantly more than the conventional fiber. Except for the AM fiber with the knee at full extension, apparent strain was greater in all anatomic fibers than in the conventional SB fiber during internal rotation maneuvers.

Conclusion: In ACL-deficient cadaveric knees, anatomic fibers undergo greater elongation and apparent strain in response to anterior translation and internal rotation maneuvers than a conventional SB graft. Because of their optimal orientation, anatomic fibers may resist pathologic anterior translation and internal rotation more than the conventional SB position.

Clinical Relevance: Conventional placement of a single-bundle graft results in suboptimal changes in fiber length and strain, suggesting that alternatives such as anatomic placement of an SB graft or double-bundle reconstruction may result in greater control of translation and rotation.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0363546508320764DOI Listing

Publication Analysis

Top Keywords

internal rotation
24
apparent strain
20
anatomic fibers
20
conventional fiber
16
anterior cruciate
12
cruciate ligament
12
anterior translation
12
translation internal
12
fibers
11
conventional
11

Similar Publications

The humeral head is the second most common anatomical site of osteonecrosis after the femoral head. Studies have reported satisfactory clinical outcomes after shoulder arthroplasty to treat osteonecrosis of the humeral head (ONHH). However, there are concerns regarding implant longevity in relatively young patients.

View Article and Find Full Text PDF

Purpose: This study aimed to explore the potential application of NAO in guiding patients through rehabilitative exercises using external audiovisual stimuli, focusing on temporospatial control in terms of range of motion (ROM), execution time and movement smoothness.

Methods: This is a preliminary analysis involving ten healthy volunteers and two patients with shoulder musculoskeletal disorders. The protocol was developed in two phases (III and IV) with different ROM limits and including flexion-extension (FE), external-rotation (ER) and internal-rotation (IR) exercises, performed at two speeds and both with and without NAO assistance.

View Article and Find Full Text PDF

Background: Traditional examinations of anterior cruciate ligament (ACL) injuries focus primarily on static assessments and lack the ability to evaluate dynamic knee stability. Hence, a dynamic scoring system for knee function is needed in clinical settings. This study aimed to propose a dynamic scoring system based on a large sample of normative six-degree-of-freedom (6-DOF) knee kinematics during gait, and validate its correlation with conventional outcome measurements in assessing ACL-injured knees.

View Article and Find Full Text PDF

Outcomes of All-Inside Arthroscopic ACL Reconstruction with Lateral Extra-Articular Tenodesis (ACLR + LET).

Indian J Orthop

January 2025

Department of Orthopaedics, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneshwar, Odisha 751024 India.

Background: Anatomic single-bundle ACL reconstruction (ACLR) produces good results when the graft and tunnel are positioned in the anatomic footprint on the femoral and tibial insertion sites in a more oblique orientation. The of the knee and its biomechanical role in controlling rotational laxity, internal rotation, and pivot shift has led to adding adjunctive procedures like extra-articular augmentation and lateral extra-articular tenodesis (LET) to decrease rotational laxity. We prospectively analyzed young adults with rotational instability and generalized laxity undergoing an arthroscopic single bundle ACLR with an additional LET procedure.

View Article and Find Full Text PDF

Background: Pelvic reconstruction after type I + II (or type I + II + III) internal hemipelvectomy with extensive ilium removal is a great challenge. In an attempt to anatomically reconstruct the hip rotation center (HRC) and achieve a low mechanical failure rate, a custom-made, 3D-printed prosthesis with a porous articular interface was developed. The aim of this study was to investigate the clinical outcomes of patients treated with this prosthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!