Acetaldehyde, the first metabolite of ethanol, reacts with DNA to form adducts, including N(2)-ethyl-2'-deoxyguanosine (N(2)-Et-dG). Although the effects of N(2)-Et-dG on DNA polymerases have been well studied, nothing is known about possible effects of this lesion on transcription by RNA polymerases (RNAPs). Using primer extension assays in vitro, we found that a single N(2)-Et-dG lesion is a strong block to both mammalian RNAPII and two other multisubunit RNAPs, (yeast RNAPII and Escherichia coli RNAP), as well as to T7 RNAP. However, the mechanism of transcription blockage appears to differ between the multisubunit RNAPs and T7 RNAP. Specifically, all three of the multisubunit RNAPs can incorporate a single rNTP residue opposite the lesion, whereas T7 RNAP is essentially unable to do so. Using the mammalian RNAPII, we found that CMP is exclusively incorporated opposite the N(2)-Et-dG lesion. In addition, we also show that the accessory transcription factor TFIIS does not act as a lesion bypass factor, as it does for other nonbulky DNA lesions; instead, it stimulates the polymerase to remove the CMP incorporated opposite the lesion by mammalian RNAPII. We also include models of the N(2)-Et-dG within the active site of yeast RNAPII, which are compatible with our observations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762520PMC
http://dx.doi.org/10.1074/jbc.M804086200DOI Listing

Publication Analysis

Top Keywords

mammalian rnapii
12
multisubunit rnaps
12
rna polymerases
8
n2-et-dg lesion
8
yeast rnapii
8
opposite lesion
8
incorporated opposite
8
lesion
7
n2-et-dg
5
rnapii
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!