An attractive path forward in proteomics is to experimentally annotate the human protein complement of the genome in a genecentric manner. Using antibodies, it might be possible to design protein-specific probes for a representative protein from every protein-coding gene and to subsequently use the antibodies for systematical analysis of cellular distribution and subcellular localization of proteins in normal and disease tissues. A new version (4.0) of the Human Protein Atlas has been developed in a genecentric manner with the inclusion of all human genes and splice variants predicted from genome efforts together with a visualization of each protein with characteristics such as predicted membrane regions, signal peptide, and protein domains and new plots showing the uniqueness (sequence similarity) of every fraction of each protein toward all other human proteins. The new version is based on tissue profiles generated from 6120 antibodies with more than five million immunohistochemistry-based images covering 5067 human genes, corresponding to approximately 25% of the human genome. Version 4.0 includes a putative list of members in various protein classes, both functional classes, such as kinases, transcription factors, G-protein-coupled receptors, etc., and project-related classes, such as candidate genes for cancer or cardiovascular diseases. The exact antigen sequence for the internally generated antibodies has also been released together with a visualization of the application-specific validation performed for each antibody, including a protein array assay, Western blot analysis, immunohistochemistry, and, for a large fraction, immunofluorescence-based confocal microscopy. New search functionalities have been added to allow complex queries regarding protein expression profiles, protein classes, and chromosome location. The new version of the protein atlas thus is a resource for many areas of biomedical research, including protein science and biomarker discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/mcp.R800013-MCP200 | DOI Listing |
Clin Chim Acta
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China. Electronic address:
Trends Pharmacol Sci
January 2025
Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:
The process by which cells translate external mechanical cues into intracellular biochemical signals involves intricate mechanisms that remain unclear. In recent years, research into post-translational modifications (PTMs) has offered valuable insights into this field, spotlighting protein prenylation as a crucial mechanism in cellular mechanotransduction and various human diseases. Protein prenylation, which involves the covalent attachment of isoprenoid groups to specific substrate proteins, profoundly affects the functions of key mechanotransduction proteins such as Rho, Ras, and lamins.
View Article and Find Full Text PDFArab J Gastroenterol
January 2025
Department of Neonatology, Children's Hospital of Soochow University, Suzhou, PR China. Electronic address:
Background And Study Aims: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates. In vitro model is an indispensable tool to study the pathogenesis of NEC. This study explored the effects of different stress factors on intestinal injury in vitro.
View Article and Find Full Text PDFTrends Biotechnol
January 2025
College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Engineering nitrogen fixation in cereals could reduce usage of chemical nitrogen fertilizers. Here, a nitrogenase biosynthesis pathway comprising 13 genes (nifB nifH nifD nifK nifE nifN nifX hesA nifV nifS nifU groES groEL) was introduced into rice by transforming multigene vectors and subsequently by sexual crossing between transgenic rice plants. Genome sequencing analysis revealed that 13 nif genes in F hybrid rice lines L12-13 and L8-17 were inserted at two loci on rice chromosome 1.
View Article and Find Full Text PDFJ Dermatol Sci
January 2025
Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Ishikawa, Japan. Electronic address:
Background: Melanocytes protect the body from ultraviolet radiation by synthesizing melanin. Tyrosinase, a key enzyme in melanin production, accumulates in the endoplasmic reticulum (ER) during melanin synthesis, potentially causing ER stress. However, regulating ER function for melanin synthesis has been less studied than controlling Tyrosinase activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!