With aid of optical methods, the presence of the paired correlations of pi-electrons has been revealed in phospholipids as well as in triacylglyceride molecules. Used for analysis were lipid extracts of individual representatives of animals of various evolutionary levels--cartilaginous and bony fish and mammals differing by the content of unsaturated fatty acids in lipids. It has been established that the necessary condition for formation of electron pairs is interaction of lipid molecules with each other. An opinion is put forward that in the liquid crystal structure of the membrane monolayer there are two zones able to form electron pairs--the zone of location of ester bonds and the zone in the region of double bonds. Besides, the paired correlation in the phospholipid molecule electron system is accompanied by the absence of electric resistance of the membrane monolayer, which provides the monolayer superconductivity at low rates of movement of the "electron fluid". It is to be noted that the very fact of the presence of the electron pair implies transfer of energy by small portions, which does not allow excitation of individual phospholipid molecules in the monolayer and promotes stability of the native membrane. Our data agree with the known statements of A. Pulman and B. Pulman that the life dynamicity is determined by dynamicity of the electron cloud in coupled or partially coupled systems.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!