Kinetics of monosaccharide isomerization has been studied in suspensions of intact, non-growing Arthrobacter nicotianae cells. Under the conditions of the study, glucose and fructose were isomerized at the same maximum rate of 700 micromol/min per 1 g dried cells, which increased with temperature (the dependence was linear at 60-80 degrees C). The proposed means of adsorption immobilization of A. nicotianae cells involve inorganic carriers differing in macrostructure, chemical nature, and surface characteristics. Biocatalysts obtained by adsorbing the cells of A. nicotianae on carbon-containing foam ceramics in the coarse of submerged cultivation were relatively stable and retained original activity (catalysis of monosaccharide isomerization) throughout 14 h of use at 70 degrees C. Maximum glucose isomerase activity (2 micromol/min per 1 g) was observed with biocatalysts prepared by adsorption of non-growing A. nicotianae cells to the macroporous carbon-mineral carrier Sapropel and subsequent drying of the cell suspension together with the carrier.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nicotianae cells
16
isomerase activity
8
arthrobacter nicotianae
8
adsorption immobilization
8
monosaccharide isomerization
8
cells
6
nicotianae
5
[glucose isomerase
4
activity suspension
4
suspension arthrobacter
4

Similar Publications

The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N.

View Article and Find Full Text PDF

High Aspect Ratio Polymer Nanocarriers for Gene Delivery and Expression in Plants.

Nano Lett

January 2025

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Plant genetic engineering methods are critical for food security and biofuel production and to enable molecular farming. Here, we elucidated how polymeric high aspect ratio nanocarriers can enable DNA delivery to plants and transient expression. We demonstrated that a nanocarrier with 20 nm width, 80 nm length, and a polymer-to-DNA ratio of N/P = 3.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are essential molecules involved in intercellular communication, signal transduction, and metabolic processes. Abiotic stresses cause the accumulation of excess ROS in plant cells. The issue of regulating the antioxidant protection of plants using natural and synthetic compounds with antioxidant activity still remains one of the most important and relevant areas of fundamental and applied research.

View Article and Find Full Text PDF

Unveiling the Movement of RanBP1 During the Cell Cycle and Its Interaction with a Cyclin-Dependent Kinase (CDK) in Plants.

Int J Mol Sci

December 2024

Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.

In the flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 ( Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner.

View Article and Find Full Text PDF

Today, is still the most common cause of both local and life-threatening systemic candidiasis. The spread of resistant fungal strains has resulted in an urgent need to search for new promising antimycotics. Here, we investigated the antifungal action of the tobacco defensin NaD1 against susceptible and resistant to azoles and echinocandins strains of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!