Folate-equipped pegylated archaeal lipid derivatives: synthesis and transfection properties.

Chemistry

Ecole Nationale Supérieure de Chimie de Rennes, UMR CNRS 6226, Equipe Chimie Organique et Supramoléculaire, Av. Général Leclerc, 35700 Rennes, France.

Published: December 2008

We have previously shown that synthetic archaeal lipid analogues are useful vectors for drug/gene delivery. We report herein the synthesis and gene transfer properties of a series of novel di- and tetraether-type archaeal derivatives with a poly(ethylene glycol) (PEG) chain and further equipped with a folic acid (FA) group. The synthetic strategy and the purification by dialysis ensured complete removal of free FA. The lipids were mixed with a conventional glycine betaine-based cationic lipid and the resulting formulations were tested in transfection assays after complexation with plasmid DNA. All four novel co-lipids afforded efficient in vitro gene transfection. Moreover, the FA-equipped derivatives permitted ligand/receptor-based targeted transfection; their activity was inhibited when free FA was added to the transfection medium. These novel archaeal derivatives equipped with FA-PEG moieties may thus be of great interest for targeted in vivo transfection.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200800950DOI Listing

Publication Analysis

Top Keywords

archaeal lipid
8
archaeal derivatives
8
transfection
6
folate-equipped pegylated
4
archaeal
4
pegylated archaeal
4
derivatives
4
lipid derivatives
4
derivatives synthesis
4
synthesis transfection
4

Similar Publications

are famous for their ability to survive in extremely harsh environments, probably due to the unprecedented stability of their lipid membranes. Key features of archaeal lipids (bolalipids) that confer their stability are methyl side groups and cyclopentanes in the alkyl chains, as well as the specific shape of the molecule, which has two headgroups connected by two tails. However, the contribution of each structural parameter to membrane stability and the underlying physical mechanism remain unknown.

View Article and Find Full Text PDF

The Conference 2024 provides a platform to promote the development of an innovative scientific research ecosystem for microbiome and One Health. The four key components - Technology, Research (Biology), Academic journals, and Social media - form a synergistic ecosystem. Advanced technologies drive biological research, which generates novel insights that are disseminated through academic journals.

View Article and Find Full Text PDF

The intestinal microbiota comprises approximately 10-10 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes.

View Article and Find Full Text PDF

Characterization of Archaea membrane lipids in radioactive springs using shotgun lipidomics.

Folia Microbiol (Praha)

December 2024

Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague, Czech Republic.

Lipids from microorganisms, and especially lipids from Archaea, are used as taxonomic markers. Unfortunately, knowledge is very limited due to the uncultivability of most Archaea, which greatly reduces the importance of the diversity of lipids and their ecological role. One possible solution is to use lipidomic analysis.

View Article and Find Full Text PDF

A hydrogenotrophic methanoarchaeon, designated strain FWC-SCC4, was isolated from cold seep sediment of Four-Way Closure Ridge, offshore southwestern Taiwan. Strain FWC-SCC4utilizes H/CO or formate, but not acetate, secondary alcohols, methylamines, methanol or ethanol for growth and methane production. Yeast extract is required for growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!