Essential oil of niaouli preferentially potentiates antigen-specific cellular immunity and cytokine production by macrophages.

Immunopharmacol Immunotoxicol

Department of Alternative Therapy, School of Alternative Medicine and Health Science, Jeonju University, Jeonju, Republic of Korea.

Published: September 2008

In vivo immunomodulatory effect of essential oil of niaouli (EON) was investigated using a mouse model, in which mice were immunized with keyhole limpet hemocyanin (KLH) and intraperitoneally given EON (less than 500 microl kg(-1) body weight). In vivo efficacy of EON for immune potentiation was convinced by significantly higher expression of an activation marker, CD25, on freshly isolated draining lymph node (LN) T cells, but not B cells. However, immunofluoresence analysis failed to show any proportional change in T/B and CD4(+)/CD8(+) T cell ratios. Data of KLH-specific immunoglobulin serum levels showed that EON does not affect humoral immune response. Instead, proliferative response and IFNgamma production of LN T cells ex vivo stimulated with KLH were significantly higher in EON-treated group, but not IL-2 and IL-4 production. These results clearly show that EON preferentially upregulates T-cell mediated cellular immunity. We further clarified the accessory cells' contribution to the EON-mediated potentiation of cellular immunity and found considerably higher production of and TNF-alpha and IL-12 by splenic macrophages from EON-treated mice when stimulated with lipopolysaccharide (LPS) and IFNgamma. Collectively, in vivo EON treatment potentiates T cell-mediated cellular immunity and macrophage activity, but not humoral immunity. The current study provides a rationale for clinical application of EON to control infectious diseases, in particular, those caused by intracellular pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08923970802135187DOI Listing

Publication Analysis

Top Keywords

cellular immunity
16
essential oil
8
oil niaouli
8
eon
7
immunity
5
niaouli preferentially
4
preferentially potentiates
4
potentiates antigen-specific
4
cellular
4
antigen-specific cellular
4

Similar Publications

Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.

View Article and Find Full Text PDF

Introduction: Recurrent uveitis (RU), an autoimmune disease, is a leading cause of ocular detriment in humans and horses. Equine and human RU share many similarities including spontaneous disease and aberrant cytokine signaling. Reduced levels of SOCS1, a critical regulator of cytokine signaling, is associated with several autoimmune diseases.

View Article and Find Full Text PDF

Objective: The aim of this prospective cohort study is to analyse the humoral and cellular vaccine responses in paediatric heart transplant recipients (HTR, n = 12), and compare it with the response in healthy controls (HC, n = 14). All participants were 5-18 years old and vaccinated with mRNA vaccine against SARS-CoV-2 between December 2021 and May 2022.

Methods: The humoral response was measured by quantifying antibody titers against SARS-CoV-2 spike protein (anti-S).

View Article and Find Full Text PDF

Objectives: KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein involved in several cellular processes, including nuclear splicing, mRNA localization, and cytoplasmic degradation. While KHSRP's role has been studied in other cancers, its specific involvement in gastric cancer remains poorly understood. This study aims to explore KHSRP expression in gastric cancer and its potential effects on tumor progression and immune response.

View Article and Find Full Text PDF

Dendritic cells (DCs) are key cellular components of the immune system and perform critical functions in innate and acquired immunity. In mammals, it is generally believed that DCs originate exclusively from hematopoietic stem cells (HSCs). Using a temporal-spatial resolved fate-mapping system, here we show that in zebrafish, DCs arise from two sources: dorsal aorta-born endothelium-derived hematopoietic progenitors (EHPs) and HSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!