Seasonal variations in the fouling diatom community from a monsoon influenced tropical estuary were investigated. The community composition did not differ significantly between stainless steel and polystyrene substrata due to dominance by Navicula spp. The experimental evidence suggests that Amphora, which is a dominant fouling diatom in temperate waters, ultimately dominates the community in tropical regions when conditions are favourable. These observations reveal that a faster onset of macrofouling interferes with the microfouling community wherein the faster recruiters that have a higher abundance in ambient waters, dominate the community. Seasonal variations were observed in the fouling diatom community. Navicula delicatula dominated during the post-monsoon and tychopelagic diatoms (Melosira and Odontella) were observed during the monsoon. Low diatom abundance was recorded during the pre-monsoon season. The results indicate that although the fouling diatom community composition does not vary between substrata, there is a seasonal change in the community depending on the physical, chemical and biological interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927010802340317DOI Listing

Publication Analysis

Top Keywords

fouling diatom
20
diatom community
16
seasonal variations
12
community
9
variations fouling
8
monsoon influenced
8
influenced tropical
8
tropical estuary
8
community composition
8
diatom
6

Similar Publications

Article Synopsis
  • This study explores the use of engineered micro-topographic surfaces, created from carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) nanocomposites, as a potential method for preventing fouling in applications.
  • The researchers focused on how manufacturing conditions, like roller speed and gap distance, influenced the surfaces' properties, finding that a smaller gap distance improved hydrophobicity.
  • The results demonstrated that the textured surfaces had up to a 35% reduction in diatom attachment compared to smooth non-textured surfaces, suggesting that surface roughness plays a key role in reducing biofouling.
View Article and Find Full Text PDF

Asymmetric flow field-flow fractionation for comprehensive characterization of hetero-aggregates made of nano-silver and extracellular polymeric substances.

J Chromatogr A

January 2025

University of Geneva, Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environemntal Biogeochemistry and Ecotoxicology, Bvd Carl-Vogt 66, 1211 Geneva Switzerland. Electronic address:

The present study explores the capability of asymmetrical flow field-flow fractionation (AF4) coupled online with diode array (DAD), fluorescence detectors (FLD), multi-angle light scattering (MALS) and dynamic light scattering (DLS) to characterize silver nanoparticles (nAg) hetero-aggregates formed with diatoms derived extracellular polymeric substances (EPS). The content of EPS varied from 10.5 to 105 mgC L and nAg were dispersed at 4 mg L in a freshwater medium.

View Article and Find Full Text PDF

Mechanically durable plant-based composite surface towards enhanced antifouling properties.

J Colloid Interface Sci

February 2025

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China.

The biofouling adhering to underwater facilities has a negative impact on the environment, energy, and economic development. However, conventional anti-adhesion organic silicon and organic fluorine materials often have poor adhesion properties and mechanical stability when combined with substrates. This work presents a novel strategy for preparing composite antifouling coatings that low surface energy plant-based carnauba wax (CW) covering through rough substrates and chemically bond with flexible polydimethylsiloxane (PDMS) oligomers or polymers.

View Article and Find Full Text PDF

Transparent, Flexible, Responsive Switching "Delayed" Amphiphilic Coatings Designed on the Basis of the Full-Cycle Antifouling Strategy.

ACS Appl Mater Interfaces

November 2024

Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.

Marine fouling on the surface of ships and equipment not only creates problems of enhanced resistance to navigation and increased energy consumption but also leads to unclear vision and inaccurate data collection. Antifouling coatings to resist fouling are effective, but it is difficult to achieve long-lasting fouling protection with a single interface state. Switching the status of the interface by intelligent response is a reasonable way to achieve full-cycle efficient antifouling.

View Article and Find Full Text PDF

AgNP Composite Silicone-Based Polymer Self-Healing Antifouling Coatings.

Materials (Basel)

August 2024

Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

Biofouling poses a significant challenge to the marine industry, and silicone anti-biofouling coatings have garnered extensive attention owing to their environmental friendliness and low surface energy. However, their widespread application is hindered by their low substrate adhesion and weak static antifouling capabilities. In this study, a novel silicone polymer polydimethylsiloxane (PDMS)-based poly(urea-thiourea-imine) (PDMS-PUTI) was synthesized via stepwise reactions of aminopropyl-terminated polydimethylsiloxane (APT-PDMS) with isophorone diisocyanate (IPDI), isophthalaldehyde (IPAL), and carbon disulfide (CS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!