Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here we provide experimental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature07132DOI Listing

Publication Analysis

Top Keywords

upper mantle
12
oceanic crust
8
mantle
8
volcanic rocks
8
melts mantle
8
mineral inclusions
8
mantle transition
8
transition zone
8
deep upper
8
primary carbonatite
4

Similar Publications

Phase transitions in the mantle control its internal dynamics and structure. The post-spinel transition marks the upper-lower mantle boundary, where ringwoodite dissociates into bridgmanite plus ferropericlase, and its Clapeyron slope regulates mantle flow across it. This interaction has previously been assumed to have no lateral spatial variations, based on the assumption of a linear post-spinel boundary in pressure and temperature.

View Article and Find Full Text PDF

Seismic tomographic models based only on wave velocities have limited ability to distinguish between a thermal or compositional origin for Earth's 3D structure. Complementing wave velocities with attenuation observations can make that distinction, which is fundamental for understanding mantle convection evolution. However, global 3D attenuation models are only available for the upper mantle at present.

View Article and Find Full Text PDF

Cortical windows for implant and cement removal during revision total elbow arthroplasty.

JSES Int

November 2024

Division of Hand and Upper-Extremity Surgery, Department of Orthopaedic Surgery, Geisinger Commonwealth School of Medicine, Geisinger MSKI, Danville, PA, USA.

Background: Revision total elbow arthroplasty (rTEA) remains a technically challenging procedure with potential for substantial morbidity. Cases involving excessively long cement mantles, removal of well-fixed implants or infected revisions requiring complete cement removal introduce additional technical challenges. Our purpose was to describe the outcomes, results, and complications associated with the use of cortical windows in rTEA.

View Article and Find Full Text PDF

The return of stagnant slab recorded by intraplate volcanism.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.

Subducted plates often stagnate in the mantle transition zone (MTZ), and the fate of the stagnant slabs is still debatable. They may sink into the lower mantle, or remain partially trapped in the MTZ, but it is uncertain whether they can return to the upper mantle. We report geochemical evidence of late-Miocene (~6 Ma) basalts from, and upper mantle seismic evidence beneath Shuangyashan, an area above the slab tear of the stagnant Pacific plate in eastern Asia, to show how the slab returns to the upper mantle from the MTZ.

View Article and Find Full Text PDF

X-ray spectromicroscopy is extensively utilized for nondestructive mapping of chemical states in materials. However, understanding and analyzing the geometric and topological aspects of such data pose challenges due to their representation in 4D space, encompassing (x, y, z) coordinates along with the energy (E) axis and often extending to 5D space with the inclusion of time (t) or reaction degree. In this study, we addressed this challenge by developing a new approach and introducing a device named `4D-XASView', specifically designed for visualizing X-ray absorption fine structures (XAFS) data in 4D (comprising 3D space and energy), through a multi-projection system, within the virtual reality (VR) environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!