Acrosome reaction is crucial to the penetration of spermatozoa through the zona pellucida (ZP). Glycosylation of ZP glycoproteins is important in spermatozoa-ZP interaction. Human ZP glycoprotein-3 (ZP3) is believed to initiate acrosome reaction. Recently, human ZP4 was also implicated in inducing acrosome reaction. These studies were based on recombinant human ZP proteins with glycosylation different from their native counterparts. In the present study, the effects of native human ZP3 and ZP4 on acrosome reaction and spermatozoa-ZP binding were investigated. Native human ZP3 and ZP4 were immunoaffinity-purified. They induced acrosome reaction and inhibited spermatozoa-ZP binding time- and dose-dependently to different extents. These biological activities of human ZP3 and ZP4 depended partly on their glycosylation, with N-linked glycosylation contributing much more significantly than O-linked glycosylation. Studies with inhibitors showed that both human ZP3- and ZP4-induced acrosome reactions were protein kinase-C, protein tyrosine kinase, T-type Ca2+ channels, and extracellular Ca2+ dependent. G-protein also participated in human ZP3- but not in ZP4-induced acrosome reaction. On the other hand, protein kinase-A and L-type Ca2+ channels took part only in human ZP4-induced acrosome reaction. This manuscript describes for the first time the actions of purified native human ZP3 and ZP4 on acrosome reaction and spermatozoa-ZP binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.108.069344 | DOI Listing |
Theriogenology
January 2025
Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, 37224, Republic of Korea. Electronic address:
Spermatozoa must undergo a complex maturation process within the female genital tract known as capacitation. This process entails the phosphorylation or dephosphorylation of various proteins, and multiple signaling pathways are recognized to play a role. The present study aims to identify alterations in the expression of proteins related to the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling pathway and assess sperm functions during capacitation.
View Article and Find Full Text PDFReprod Sci
January 2025
Department of Biology, Faculty of Science, University of Qom, Qom, 3716146611, Iran.
Fluoxetine is used in the management of depression, anxiety and other mood disorders by increasing serotonin levels in the brain and can cause sexual side effects by changing the homeostasis of sex hormones and increasing oxidative stress. Since many men who take fluoxetine are of reproductive age and sperm are exposed to fluoxetine for a considerable time, this study aimed to examine the in vitro effects of fluoxetine on human sperm biochemical markers and sperm parameters. Semen samples from 30 fertile men were divided into three groups: a positive control group, a negative control group and a fluoxetine-treated group.
View Article and Find Full Text PDFBiomedicines
December 2024
Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia.
Mammalian fertilization is a complex and highly regulated process that has garnered significant attention, particularly with advancements in assisted reproductive technologies such as in vitro fertilization (IVF). The fusion of egg and sperm involves a sequence of molecular and cellular events, including capacitation, the acrosome reaction, adhesion, and membrane fusion. Critical genetic factors, such as IZUMO1, JUNO (also known as FOLR4), CD9, and several others, have been identified as essential mediators in sperm-egg recognition and membrane fusion.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
Pig production through crossbreeding methods is a pillar of the swine industry; however, research on the fertilization ability of male pigs in crossbreeds is lacking. Therefore, this study investigated the effects of Duroc sperm (DS) and Landrace sperm (LS) on fertility in Yorkshire × Landrace × Duroc (YLD) oocytes. Sperm were collected from the Duroc and Landrace species, and sperm characteristics, viability, and acrosome reactions were analyzed using flow cytometry.
View Article and Find Full Text PDFReprod Domest Anim
December 2024
Animal Reproduction, Gynaecology and Obstetrics, Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, Haryana, India.
Bull fertility is a multi-factorial trait and is affected by many factors, such as nutrition, genetics, and epigenetics. Superior quality male germplasm with high genetic merit helps to improve the livestock production trait. To achieve the target of livestock production, the availability of superior male germplasm is a great concern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!