Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling.

Mol Biol Cell

Institut de Recherches en Technologies et Sciences pour le Vivant, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Centre d'Energie Atomique, Université Joseph Fourier, 38054 Grenoble, France.

Published: October 2008

The Arabidopsis MAP65s are a protein family with similarity to the microtubule-associated proteins PRC1/Ase1p that accumulate in the spindle midzone during late anaphase in mammals and yeast, respectively. Here we investigate the molecular and functional properties of AtMAP65-5 and improve our understanding of AtMAP65-1 properties. We demonstrate that, in vitro, both proteins promote the formation of a planar network of antiparallel microtubules. In vivo, we show that AtMAP65-5 selectively binds the preprophase band and the prophase spindle microtubule during prophase, whereas AtMAP65-1-GFP selectively binds the preprophase band but does not accumulate at the prophase spindle microtubules that coexists within the same cell. At later stages of mitosis, AtMAP65-1 and AtMAP65-5 differentially label the late spindle and phragmoplast. We present evidence for a mode of action for both proteins that involves the binding of monomeric units to microtubules that "zipper up" antiparallel arranged microtubules through the homodimerization of the N-terminal halves when adjacent microtubules encounter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2555953PMC
http://dx.doi.org/10.1091/mbc.e08-04-0341DOI Listing

Publication Analysis

Top Keywords

microtubule-associated proteins
8
arabidopsis map65s
8
selectively binds
8
binds preprophase
8
preprophase band
8
prophase spindle
8
microtubules
5
proteins arabidopsis
4
map65s promote
4
promote antiparallel
4

Similar Publications

Cytoplasmic streaming of symbiotic algae in the ciliate Stentor pyriformis.

Protist

January 2025

Chiba Institute of Science, 3 Shiomi-cho, Choshi, Chiba 288-0025, Japan. Electronic address:

Stentor pyriformis is a unicellular organism whose inherent green-algal symbionts can be utilized in evolutionary and cytological studies. The cytoplasm contains symbiotic algae and starch granules, which are in constant motion. The habitats of the ciliate S.

View Article and Find Full Text PDF

Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed.

View Article and Find Full Text PDF

The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.

View Article and Find Full Text PDF

Core blood biomarkers of Alzheimer's disease: A single-center real-world performance study.

J Prev Alzheimers Dis

February 2025

Neurology, Fondazione IRCCS "San Gerardo dei Tintori", Monza, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy; Laboratory of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. Electronic address:

Background: The new criteria for Alzheimer's disease pave the way for the introduction of core blood biomarkers of Alzheimer's disease (BBAD) into clinical practice. However, this depends on the demonstration of sufficient accuracy and robustness of BBADs in the intended population.

Objectives: To assess the diagnostic performance of core BBADs in our memory clinic, comparing them with cerebrospinal fluid (CSF) analysis.

View Article and Find Full Text PDF

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!