Vascular endothelial cadherin (VE-cadherin) connects neighboring endothelial cells (ECs) via interendothelial junctions and regulates EC proliferation and adhesion during vasculogenesis and angiogenesis. The cytoplasmic domain of VE-cadherin recruits alpha- and beta-catenins and gamma-catenin, which interact with the actin cytoskeleton, thus modulating cell morphology. Dysregulation of the adherens junction/cytoskeletal axis is a hallmark of invasive tumors. We now demonstrate that the transmembrane ubiquitin ligase K5/MIR-2 of Kaposi's sarcoma-associated herpesvirus targets VE-cadherin for ubiquitin-mediated destruction, thus disturbing EC adhesion. In contrast, N-cadherin levels in K5-expressing cells were increased compared to those in control cells. Steady-state levels of alpha- and beta-catenins and gamma-catenin in K5-expressing ECs were drastically reduced due to proteasomal destruction. Moreover, the actin cytoskeleton was rearranged, resulting in the dysregulation of EC barrier function as measured by electric cell-substrate impedance sensing. Our data represent the first example of a viral protein targeting adherens junction proteins and suggest that K5 contributes to EC proliferation, vascular leakage, and the reprogramming of the EC proteome during Kaposi's sarcoma tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2546942 | PMC |
http://dx.doi.org/10.1128/JVI.02633-07 | DOI Listing |
Strict regulation of type I interferons (IFN) is vital for balancing tissue damage and immunity against infections. We previously found that during Kaposi's sarcoma-associated herpesvirus infection, IFN induction was limited to a small percentage of infected B cells. This heterogeneity was not explained by viral gene expression.
View Article and Find Full Text PDFJ Med Virol
January 2025
Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA.
Kaposi's sarcoma-associated herpesvirus is an oncogenic gammaherpesvirus that plays a major role in several human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. The complexity of KSHV biology is reflected in the sophisticated regulation of its biphasic life cycle, consisting of a quiescent latent phase and virion-producing lytic replication. KSHV expresses coding and noncoding RNAs, including microRNAs and long noncoding RNAs, which play crucial roles in modulating viral gene expression, immune evasion, and intercellular communication.
View Article and Find Full Text PDFJ Med Virol
January 2025
Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 pandemic, has resulted in over 7 million confirmed deaths. In addition to severe respiratory and systematic symptoms, several comorbidities increase the risk of fatal outcomes. Therefore, it is essential to investigate the impact of COVID-19 on pre-existing conditions in patients, such as cancer and other infectious diseases.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
microRNAs (miRNAs) are central post-transcriptional gene expression regulators in healthy and diseased states. Despite decades of effort, deciphering miRNA targets remains challenging, leading to an incomplete miRNA interactome and partially elucidated miRNA functions. Here, we introduce microT-CNN, an avant-garde deep convolutional neural network model that moves the needle by integrating hundreds of tissue-matched (in-)direct experiments from 26 distinct cell types, corresponding to a unique training and evaluation set of >60 000 miRNA binding events and ~30 000 unique miRNA-gene target pairs.
View Article and Find Full Text PDFTrop Med Infect Dis
December 2024
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Kaposi sarcoma-associated herpes virus (KSHV), also known as human herpes virus 8 (HHV-8), is the primary etiologic cause of Kaposi sarcoma (KS) and KSHV Inflammatory Cytokine Syndrome (KICS). Patients with KICS demonstrate symptoms of systemic inflammation, high KSHV viral load, elevation of inflammatory markers, and increased mortality. Management requires rapid diagnosis, treatment of underlying HIV, direct treatment of KS, and addressing the hyperimmune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!