Estimating naphthenic acids concentrations in laboratory-exposed fish and in fish from the wild.

Chemosphere

Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9.

Published: September 2008

Naphthenic acids (NAs) are the most water-soluble organic components found in the Athabasca oil sands in Alberta, Canada, and these acids are released into aqueous tailing waters as a result of bitumen extraction. Although the toxicity of NAs to fish is well known, there has been no method available to estimate NAs concentrations in fish. This paper describes a newly developed analytical method using single ion monitoring gas chromatography-mass spectrometry (GC-MS) to measure NAs in fish, down to concentrations of approximately 0.1mgkg(-1) of fish flesh. This method was used to measure the uptake and depuration of commercial NAs in laboratory experiments. Exposure of rainbow trout (Oncorhynchus mykiss) to 3mg NAsl(-1) for 9d gave a bioconcentration factor of approximately 2 at pH 8.2. Within 1d after the fish were transferred to NAs-free water, about 95% of the NAs were depurated. In addition, the analytical method was used to determine if NAs were present in four species of wild fish - northern pike (Esox lucius), lake whitefish (Coregonus clupeaformis), white sucker (Catostomus commersoni), walleye (Sander vitreus) - collected from near the oil sands. Flesh samples from 23 wild fish were analyzed, and 18 of these had no detectable NAs. Four fish (one of each species) contained NAs at concentrations from 0.2 to 2.8mgkg(-1). The GC-MS results from one wild fish presented a unique problem. However, with additional work it was concluded that the NAs concentration in this fish was <0.1mgkg(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2008.06.040DOI Listing

Publication Analysis

Top Keywords

fish
12
nas fish
12
wild fish
12
nas
10
naphthenic acids
8
oil sands
8
nas concentrations
8
analytical method
8
estimating naphthenic
4
concentrations
4

Similar Publications

Application of Animal Resources into the Maillard Reaction Model System to Improve Meat Flavor.

Food Sci Anim Resour

January 2025

Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea.

Simulating meat flavor via Maillard reaction model systems that contain a mixture of amino acids and reducing sugars is an effective approach to understanding the reaction mechanism of the flavor precursors. Notably, animal resources such as fish, beef, chicken, pork hydrolysates, and fats are excellent precursors in promoting favorable meaty and roasted flavors and umami tastes of Maillard reaction products. The experimental conditions and related factors of the model systems for sensory enhancements, debittering, and off-flavor reduction with meat and by-products are summarized in this review.

View Article and Find Full Text PDF

Pediatric-type follicular lymphoma (PTFL) is an extremely rare B-cell lymphoma that primarily affects children and young adults, typically in individuals under 25 years old, with a median age of 15 years. Here, we report a rare case of PTFL in a 27-year-old adult male who presented with a slow-growing mass near his left ear. Initial CT scans of the neck revealed two oval-shaped, smooth, well-defined, homogeneously enhancing soft tissue density lesions in the superficial lobe of the left parotid gland.

View Article and Find Full Text PDF

The () gene family is of rising importance as their fusions are oncogenic, and specific target drugs are available to inhibit the chimera proteins. Pan-TRK antibody, which shows the overexpression of the genes, is a useful tool to detect tumors with or without gene alterations, due to high negative predictive value. Though it is well known that pan-TRK immunopositivity is usually not connected to fusion, the role of other possible genetic alterations is under-researched.

View Article and Find Full Text PDF

Adaptation responses to salt stress in the gut of .

Anim Cells Syst (Seoul)

January 2025

Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.

Osmoregulation is essential for the survival of aquatic organisms, particularly teleost fish facing osmotic challenges in environments characterized by variable salinity. While the gills are known for ion exchange, the intestine's role in water and salt absorption is gaining attention. Here, we investigated the adaptive responses of the intestine to salinity stress in guppies (), observing significant morphological and transcriptomic alterations.

View Article and Find Full Text PDF

The Influence of Migration Timing and Local Conditions on Reproductive Timing in Arctic-Breeding Birds.

Ecol Evol

January 2025

Wildlife Research Division Environment and Climate Change Canada Ottawa Ontario Canada.

For birds breeding in the Arctic, nest success is affected by the timing of nest initiation, which is partially determined by local conditions such as snow cover. However, conditions during the non-breeding season can carry over to affect the timing of breeding. We used tracking and breeding data from 248 individuals of 8 species and subspecies of Arctic-breeding shorebirds to estimate how the timing of nest initiation is related to local conditions like snowmelt phenology versus prior conditions, measured by the timing and speed of migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!