This study identifies the main sources of systemic plutonium decorporated in the rat after DTPA i.v. at the dose recommended for humans (30 mumol kg(-1)). For this purpose, standard biokinetic approaches are combined to plasma ultrafiltration for separation of plutonium complexes according to their molecular weight. In vitro studies show that at the recommended DTPA dose, less than 5% of the plasma plutonium of contaminated rats can be displaced from high-molecular-weight ligands. After i.v. administration of Pu-DTPA, early ultrafiltrability of plutonium in plasma decreases with total DTPA dose, which is associated with an increase in plutonium bone retention. This demonstrates the instability of Pu-DTPA complexes, injected in vivo, below the minimal Ca-DTPA dose of 30 mumol kg(-1). Plutonium biokinetics is compared in rats contaminated by plutonium-citrate i.v. and treated or not with DTPA after 1 h. No significant decrease in plasma plutonium is observed for the first hour after treatment, and the fraction of low-molecular-weight plutonium in plasma is nearly constant [5.4% compared with 90% in Pu-DTPA i.v. (30 mumol kg(-1)) and 0.7% in controls]. Thus plutonium decorporation by DTPA is a slow process that mainly involves retention compartments other than the blood. Plutonium-ligand complexes formed during plutonium deposition in the retention organs appear to be the main source of decorporated plutonium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RR1348.1 | DOI Listing |
Toxicol In Vitro
January 2025
Atomic Energy and Alternative Energies Commission (CEA), Laboratory of Radiotoxicology, CEA, Paris-Saclay University, Bruyères-le-Châtel, France.
Internal contamination by inhalation of plutonium poorly soluble compounds leads to their long time retention in alveolar macrophages inducing delayed pathology development. As previous studies highlighted co-localization of retained Pu and inflammatory lesions, this study was designed to assess the combined effect of the reference treatment (DTPA) and anti-inflammatory drugs on Pu-induced early response of macrophages in vitro. Pu colloids, mimicking poorly soluble Pu, were characterized using filtration and solid-state nuclear track detectors CR39.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona, Marti i Franqués, 1-11, ES-08028, Barcelona, Spain; Serra-Húnter Programme, Generalitat de Catalunya, Barcelona, Spain; Institut de Recerca de l'Aigua, University of Barcelona, Spain. Electronic address:
Background: Analyzing mixtures of radionuclides is a complex task. Two situations are the mixtures of Sr with Sr and Sr with plutonium isotopes. The challenge arises in emergency scenarios resulting from accidents where the activity of Sr is over 20 times higher than that of Sr, complicating its quantification and requiring delayed measurements.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Loess and Quaternary Geology, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, PR China; Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an 710061, PR China. Electronic address:
Radiation risk through seafood consumption is a big public concern under the discharge of nuclear contaminated water. Plutonium is an important radionuclide in view of radiation risk due to its high radiological and chemical toxicity, as well as consistent presence in the environment. The distribution and level of plutonium isotopes (Pu, Pu) in marine biota collected along the coast of China in 2022-2023 were investigated.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Xi'an AMS Center, State Key Laboratory of Loess Science, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, P. R. China.
There has been a sharp rise in the extent and scale of human activities since the mid-20th century, termed the "Great Acceleration", and nuclear activities are one of the defining technological processes for this period. Pu released by atmospheric nuclear weapons tests provides an ideal chronostratigraphic marker for labeling this change due to its global fallout feature, temporal mutation, and long half-lives. However, the accumulation dynamics of plutonium from atmospheric deposition to preservation in the sediment is still controversial.
View Article and Find Full Text PDFTalanta
January 2025
National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba, Chiba, 263-8555, Japan; Department of Physics, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
Natural uranium isotopes have extremely long half-lives; therefore, analytical methods based on the number of atoms, such as X-ray fluorescence (XRF) analysis, are suitable for uranium detection. However, XRF measurements cannot be used to detect the major isotopes of americium when present in amounts barely detectable using radiation measurements, owing to their relatively short half-lives. Because of α-decay-induced internal conversion, where orbital electrons are emitted instead of γ-rays, these nuclides emit characteristic X-rays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!