The objects of researches are the soil and wild vegetation in the region of the radioactive waste storage situation. In result of monitoring it was recognized 137Cs unlike 90Sr did not spread out of storage territory in spite of trench destruction and migration of radionuclides with surface and ground waters. The forms of 137Cs, 90Sr and natural radionuclide 226Ra in soils and coefficients of 90Sr accumulation for the different kinds of plants growing at the territory of storage and 50-m zone around it were researched. The low specific activities of mobile forms of 90Sr were recognized for samples of soils selected from lowland by the terrace. The considerable differences were found for specific activities of radionuclides for different soil layers. Essential irregularity of soil surface and vegetation contamination at the test points disposed at a short distances from each other also was found. The interpretation of obtained results is presented.
Download full-text PDF |
Source |
---|
Langmuir
January 2025
Department of Chemical Engineering, Canakkale Onsekiz Mart University,17100 Canakkale, Turkey.
Radioactive iodine, a key waste product of nuclear energy, has been a significant concern among nuclear materials because of its high volatility and its ability to easily enter the human metabolism. Porous materials containing a large number of N-heterocyclic units such as carbazole in the skeletons use as effective adsorbents showing high iodine capture capacities. Herein, a new carbazole-bismaleimide-based hyper-cross-linked porous organic polymer (CzBMI-POP) was successfully prepared from a new tetra-armed carbazole-maleimide monomer (Bis-Cz(BMI)), which contains biscarbazole units and maleimide side groups.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia.
Dealing with radioactive waste, particularly from various industrial processes, poses significant challenges. This paper explores the use of lithium aluminate borate (Li-Al-B) glass matrix as an alternative method for immobilizing radioactive waste, focusing specifically on waste generated in tin smelting industries, known as tin slag. The study primarily concentrates on transforming tin slag, a byproduct abundant in Natural Occurring Radioactive Material (NORM), into a stable and safe form for disposal.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Medical Physics, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Lodz, Poland; Department of Medical Imaging Technology, Medical University of Lodz, Ul. Lindleya 6, 90-131, Łódź, Poland.
In this study, ten recovered water samples were analysed using gamma spectrometry and Liquid Scintillation Counting techniques for identification of radioactive impurities (quality and quantity) and for radioactive waste qualifications. The presence of several radioactive isotopes of H, Co Mn in the recovered [O] water irradiated with 11 MeV protons used to produce [F] fluoride by the O(p,n)F reaction has been confirmed. Radioactive impurities were generated directly in enriched water or washed out from activated Havar foil, or tantalum body target material.
View Article and Find Full Text PDFInorg Chem
January 2025
Jiangxi Province Key Laboratory of Nuclear Physics and Technology, East China University of Technology, Nanchang 330013, China.
Recycling waste salt in the dry reprocessing of nuclear fuel and reducing electric energy consumption in the electrorefining process are crucial steps toward addressing significant challenges in this field. The present study proposes a novel approach to purify waste salt by selectively adsorbing excessive fission products using 5A molecular sieves (5A), based on the principles of electrorefining, with the ultimate aim of achieving sustainable development in nuclear fuel. First, Lutetium (Lu)-Bi alloy was synthesized through constant potential electrolysis in the LiCl-KCl-LuCl melt, resulting in a 90.
View Article and Find Full Text PDFInorg Chem
January 2025
Center for Hierarchical Waste Form Materials, University of South Carolina, Columbia, South Carolina 29208, United States.
Ionic liquids were used as low temperature solvents for the synthesis of new lanthanide and transuranic-element (TRU) borate cluster structures. Ionothermal synthesis with the ionic liquid [BMIm]Cl (1-butyl-3-methylimidazolium chloride) yielded the La, Nd, and Am containing phases LaBOCl, NdBOCl, and AmBOCl. The structures of the La, Nd, and Am borate clusters were determined by single crystal X-ray diffraction (SCXRD) and found to be cubic, in the chiral space group 23.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!