Lipid content of tissue and of fraction of microsomes in neocortex of Wistar rats was studies under artificial hypothermia, after X-ray irradiation in dose 8 Gy under conditions of normothermia and artificial hypothermia in 48 h. The condition of artificial hypothermia get by cooling of rats to 15-18 degrees C. It was shown, that in fraction of microsomes of hypothermia rats the content of phosphatidylinositol was decreased, and in 48 h after cooling of rats the amount of protein, total and individual phospholipids was increased. The lipid content in tissue and in fraction of microsomes of rats, which were irradiated in normotermia, had no changes after 48 h. In fraction of microsomes of rats, which were irradiated after hypothermia, the amount of protein, total phospholipids, sphingomyelin, phosphatidylcholine and phosphatidylserine is increased trustworthy. Thus, we think, that radioprotective effect of hypotermia may be connected with the accumulation of proteins and of phospholipids in the endoplasmic reticulum membranes of neocortex.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fraction microsomes
16
artificial hypothermia
12
lipid content
8
content tissue
8
tissue fraction
8
cooling rats
8
amount protein
8
protein total
8
microsomes rats
8
rats irradiated
8

Similar Publications

Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.

View Article and Find Full Text PDF

The nicotinic acetylcholine receptor (nAChR) is a pentameric ligand-gated ion channel (pLGIC) commonly used as a model for receptors belonging to the Cys-loop superfamily. Members of pLGICs are standardly used in numerous toxicological investigations e.g.

View Article and Find Full Text PDF

The synthesis of n-3 and n-6 polyunsaturated acids (PUFAs) is associated with physiological functions in mammals, being catalyzed by Δ-5D and Δ-6D desaturases and elongases Elovl-2 and Elovl-5. In this context, we aimed to study the chief kinetic features of PUFA liver anabolism, looking upon (i) the time-dependency for the specific activity of Δ-6D, Δ-5D, Elovl2, Elovl2/5 and Elovl5, using n-3 and n-6 precursors between 0 and 240 min ex vivo in mouse liver.; and (ii) the specific activity-substrate (α-linolenic acid; ALA) concentration responses of Δ-6D in the absence and presence of linoleic acid (LA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), an enzyme regarded as the rate-limiting step in PUFA anabolism.

View Article and Find Full Text PDF

SPT-07A, a D-borneol, is currently being developed in China for the treatment of ischemic stroke. We aimed to create a whole-body physiologically-based pharmacokinetic (PBPK) model to predict the pharmacokinetics of SPT-07A in rats, dogs, and humans. The in vitro metabolism of SPT-07A was studied using hepatic, renal, and intestinal microsomes.

View Article and Find Full Text PDF

Correction of aberrant splicing of ELP1 pre-mRNA by kinetin derivatives - A structure activity relationship study.

Eur J Med Chem

February 2025

Laboratory of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic. Electronic address:

Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!