Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The topical problem of experimental neurobiology is the development of pharmacological models to search for correlation between induced brain pathology and changes in behavioral phenotype. Cytosine arabinoside (Ara-c) is an antiproliferative agent, exposure to which in the critical period of the embryonic formation of the cortex results in the abnormality of its development. This study was aimed at estimation of the somatic and sensorimotor aspects of the early postnatal maturatrion of behavioral acts in mice with developmental abnormalities of the cortex induced by Ara-c. Pregnant C57BL/6 mice were injected with the substance on the 12.5th 13.5th gestation days. Offspring behavior was studied using a modified Fox battery on the 1st-21st postnatal days. Severe disorders of the sensorimotor development with slight somatic changes were revealed in the offsprings of Ara-c-treated mice. Features of these pathological changes point to a correlation between the developmental changes in behavioral phenotype and irregularities of the cortex formation. This experimental model can be applied to neurobiological and pharmacological studies.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!