Controlled self-assembly and chemical tailoring of bimolecular networks on surfaces is demonstrated using structural derivatives of 3,4:9,10-perylenetetracarboxylic diimide (PTCDI) combined with melamine (1,3,5-triazine-2,4,6-triamine). Two functionalised PTCDI derivatives have been synthesised, Br(2)-PTCDI and di(propylthio)-PTCDI, through attachment of chemical side groups to the perylene core. Self-assembled structures formed by these molecules on a Ag-Si(111)sqrt3 x sqrt3R30 degrees surface were studied with a room-temperature scanning tunneling microscope under ultrahigh vacuum conditions. It is shown that the introduction of side groups can have a significant effect upon both the structures formed, notably in the case of di(propylthio)-PTCDI which forms a previously unreported unimolecular hexagonal arrangement, and their entrapment behaviour. These results demonstrate a new route of functionalisation for network pores, opening up the possibility of designing nanostructured surface structures with chemical selectivity and applications in nanostructure templating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200800476 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!