Purpose: To derive reproducibility assessments of ejection fraction (EF) and left ventricular mass (LVM) from short-axis cardiac MR images acquired at single and multiple time-points on different 1.5T scanner models.

Materials And Methods: Images of 15 healthy volunteers were acquired twice using a Magnetom Avanto scanner (Siemens, Erlangen, Germany) and once using a Signa Excite scanner (General Electric, Milwaukee, WI, USA) over four months, and analyzed using ARGUS and MASS Analysis+ software, respectively. Two physicists independently segmented the myocardial borders in order to derive intra- and interobserver assessments of EF and LVM for single and multiple time-points on the same and different scanners.

Results: For EF, the coefficient of repeatability (CoR) increased as different observers, multiple time-points, and different scanners were introduced. The CoR ranged from 2.8% (intraobserver measurements, single time-point, same scanner) to 10.0% (interobserver measurements, different time-points, different scanners). For LVM, intraobserver CoR parameters were consistently smaller than interobserver values. The CoR ranged from 7.8 g (intraobserver measurements, single time-point, same scanner) to 39.5 g (interobserver measurements, different time-points, different scanners).

Conclusion: Reproducible EF data can be obtained at single or multiple time-points using different scanners. However, LVM is notably susceptible to interobserver variation, and this should be carefully considered if similar evaluations are planned as part of multicenter or longitudinal investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.21401DOI Listing

Publication Analysis

Top Keywords

multiple time-points
16
single multiple
12
time-points scanners
12
left ventricular
8
healthy volunteers
8
cor ranged
8
intraobserver measurements
8
measurements single
8
single time-point
8
time-point scanner
8

Similar Publications

Combination therapies using checkpoint inhibitors with immunostimulatory agonists have attracted great attention due to their synergistic therapeutic effects for cancer treatment. However, such combination immunotherapies require specific timing of doses to show sufficient antitumor efficacy. Sequential treatment usually requires multiple administrations of the individual drugs at specific time points, thus increasing the complexity of the drug regimen and compromising patient compliance.

View Article and Find Full Text PDF

Introduction: Probiotics are a promising intervention for modulating the microbiome and the immune system, promoting health benefits in cattle. While studies have characterized the calf lung bacterial profile with and without oral probiotics, simultaneous probiotic effects on the bacterial populations of multiple sites along the respiratory tract have not been characterized.

Methods: This study utilized the same pre-weaning diary calf group from our previous studies to characterize the bacterial populations present in the nostril and tonsil across control and treatment groups and nine sampling time points.

View Article and Find Full Text PDF

Background: Not all breast cancer (BC) patients can benefit from neoadjuvant therapy (NAT). A poor response may result in patients missing the best opportunity for treatment, ultimately leading to a poor prognosis. Thus, to identify an effective predictor that can assess and predict patient response at early time points, we focused on circulating tumor DNA (ctDNA), which is a vital noninvasive liquid biopsy biomarker.

View Article and Find Full Text PDF

Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context.

View Article and Find Full Text PDF

Digital dermatitis (DD) is a skin infection of cattle's feet with multiple bacteria suspected to be involved, yet its precise etiopathogenesis remains unclear. This longitudinal study explored the temporal changes of seven DD-associated bacteria in feet developing lesions or remaining healthy, while simultaneously investigating their persistence in potential reservoirs as sources of infection. Weekly swabs were collected from feet skin and saliva of 53 Holstein cows without DD lesions sequentially enrolled at calving in a commercial dairy herd.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!