The effect of Irgarol 1051 on the biofilm-forming diatom, Amphora coffeaformis, and on natural biofilm (NBF) was assessed. A reduction in the number of A. coffeaformis cells within a biofilm was observed after treatment with Irgarol 1051, confirming its role as an inhibitor of photosynthetic activity. The impact of this compound on the development of nauplii of Balanus amphitrite was evaluated through its impact on Chaetoceros calcitrans, which was provided as food for the larvae. A reduction in the number of cells of C. calcitrans was observed when treated with Irgarol 1051. When larvae of B. amphitrite were reared using C. calcitrans in the presence of Irgarol 1051, their mortality increased with an increase in the concentration of Irgarol 1051 (13% at 1 microg l(-1) to 40% at 1000 microg l(-1)) compared with the control (6%). Nauplii reared in the presence of Irgarol 1051 developed more slowly (6-7 days) compared with control larvae (4-5 days). Cyprid bioassay results indicated an increase in percentage metamorphosis (76%) when NBFs were treated with the highest concentration of Irgarol 1051, compared with untreated biofilm (28%). The enhanced rate of metamorphosis appeared to be related to an increase in bacterial numbers in the biofilm, which may have been due to lysis of diatoms caused by Irgarol 1051. A. coffeaformis biofilms grown in the presence of antibiotics showed a significant reduction in cell numbers, which on further treatment with Irgarol 1051 showed an increase in cell numbers. Thus, it can be hypothesised that A. coffeaformis cells that were subjected to stress twice may have expressed resistant genes. Furthermore, if plasmids are present in the biofilms, they may enhance transfer to the surviving cells making them more resistant to hostile conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927010802339764 | DOI Listing |
Comp Biochem Physiol C Toxicol Pharmacol
November 2024
Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea. Electronic address:
Irgarol 1051 is an herbicide extensively utilized in antifouling paint due to its ability to inhibit photosynthesis. Irgarol and its photodegradation products are highly persistent in waters and sediments, although they are present in low concentrations. However, our understanding of the harmful effects of Irgarol on non-target organisms remains limited.
View Article and Find Full Text PDFPLoS One
February 2024
Jiangsu Key Laboratory of Marine Bioresources and Environment/Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.
Arch Environ Contam Toxicol
November 2023
Hatsukaichi Branch, Fisheries Technology Institute, Japan, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan.
A monitoring survey of antifouling biocides was conducted in the Harima Nada Sea and Osaka Bay of the Seto Inland Sea, Japan to assess contamination by organotin (OT) compounds and alternative biocides. The concentrations of tributyltin (TBT) compounds in surface water ranged from 1.0 to 2.
View Article and Find Full Text PDFSci Total Environ
November 2023
Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, 71500, Greece. Electronic address:
Besides the release of organic matter from uneaten feed and fish excreta, a considerable amount of deleterious chemicals may also end up into the marine environment from intensive aquaculture. A fraction of these pollutants remains freely dissolved and pose a threat to marine life due to increased bioavailability. Given the filter-feeding ability of sponges, we investigated the capacity of four ubiquitous Mediterranean species (Agelas oroides, Axinella cannabina, Chondrosia reniformis and Sarcotragus foetidus) in removing aquaculture-related dissolved organic pollutants.
View Article and Find Full Text PDFEnviron Evid
March 2023
Equipe Ecophysiologie Corallienne, Centre Scientifique de Monaco, MC-98000, Monaco, Monaco.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!