Aim: The present study was designed to explore the endogenous production and localization of the sulfur dioxide (SO2)/aspartate aminotransferase pathway in vascular tissues of rats and to examine its vasorelaxant effect on isolated aortic rings,as well as the possible mechanisms.

Methods: The content of SO2 in the samples was determined by using high performance liquid chromatography with fluorescence detection. Aspartate aminotransferase activity and its gene expression were measured by an enzymatic method and quantitative RT-PCR, respectively. Aspartate aminotransferase mRNA location in aorta was detected by in situ hybridization. The vasorelaxant effect of SO2 on isolated aortic rings of the rats was investigated in vitro. L-type calcium channel blocker, nicardipine, and L-type calcium channel agonist, Bay K8644, were used to explore the mechanisms by which SO2 relaxed the aortic rings.

Results: Aorta had the highest SO2 content among the vascular tissues tested (P<0.01). The aortic aspartate aminotransferase mRNA located in endothelia and vascular smooth muscle cells beneath the endothelial layer.Furthermore, a physiological dose of the SO2 derivatives (Na2SO3/NaHSO3) relaxed isolated artery rings slightly, whereas higher doses (1-12 mmol/L) relaxed rings in a concentration-dependent manner. Pretreatment with nicardipine eliminated the vasorelaxant response of the norepinephrine-contracted rings to SO2 completely. Incubation with nicardipine or SO2 derivatives successfully prevented vasoconstriction induced by Bay K8644.

Conclusion: Endogenous SO2 and its derivatives have a vasorelaxant function, the mechanisms of which might involve the inhibition of the L-type calcium channel.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-7254.2008.00845.xDOI Listing

Publication Analysis

Top Keywords

sulfur dioxide
8
vascular tissues
8
isolated aortic
8
aspartate aminotransferase
8
l-type calcium
8
calcium channel
8
endogenously generated
4
generated sulfur
4
dioxide vasorelaxant
4
vasorelaxant rats
4

Similar Publications

Comorbidities related to cardiovascular disease (CVD) and environmental pollution have emerged as serious concerns. The exposome concept underscores the cumulative impact of environmental factors, including climate change, air pollution, chemicals like PFAS, and heavy metals, on cardiovascular health. Chronic exposure to these pollutants contributes to inflammation, oxidative stress, and endothelial dysfunction, further exacerbating the global burden of CVDs.

View Article and Find Full Text PDF

Congenital heart disease (CHD) represents the major cause of infant mortality related to congenital anomalies globally. The etiology of CHD is mostly multifactorial, with environmental determinants, including maternal exposure to ambient air pollutants, assumed to contribute to CHD development. While particulate matter (PM) is responsible for millions of premature deaths every year, overall ambient air pollutants (PM, nitrogen and sulfur dioxide, ozone, and carbon monoxide) are known to increase the risk of adverse pregnancy outcomes.

View Article and Find Full Text PDF

Association between air pollutants and blood cell counts in pediatric patients with asthma: a retrospective observational study.

BMC Public Health

January 2025

Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Dapi Road, Niaosong Township, Kaohsiung County 833, Kaohsiung City, Taiwan.

Background: Asthma is a common respiratory disease in children, and air pollution is a risk factor for pediatric asthma. However, how air pollution affects blood cells in pediatric patients with asthma remains unclear.

Methods: This retrospective observational study, performed in 2007-2018 at a medical center, enrolled non-trauma patients aged < 17 years who visited the emergency department and had asthma.

View Article and Find Full Text PDF

Association between joint exposure to ambient air pollutants and carotid plaque: The mediating role of cardiometabolic risk factors.

Ecotoxicol Environ Saf

January 2025

Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA. Electronic address:

Background: Research has shown that exposure to joint air pollution is related to atherosclerosis, but little evidence has been found for carotid plaques. Our objective is to assess the association between exposure to joint air pollutants and carotid plaque and explore the mediating role of cardiometabolic factors in this relationship.

Methods: The Beijing Health Management Cohort (BMHC) study followed participants recruited from 2013 to 2014 until December 31, 2020.

View Article and Find Full Text PDF

Sulfur dioxide exposure of mice induces peribronchiolar fibrosis-A defining feature of deployment-related constrictive bronchiolitis.

PLoS One

January 2025

Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America.

Deployment-related constrictive bronchiolitis (DRCB) has emerged as a health concern in military personnel returning from Southwest Asia. Exposure to smoke from a fire at the Al-Mishraq sulfur enrichment facility and/or burn pits was reported by a subset of Veterans diagnosed with this disorder. DRCB is characterized by thickening and fibrosis of small airways (SA) in the lung, but whether these are related to toxin inhalation remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!