Mdx mice cardiomyocytes are a perspective model to study survival of terminally differentiated cardiomyocytes and formation of cardiomyopathy under conditions of oxidative stress. It was previously observed that dynamical stress induced formation of low molecular DNA fragments. It is beyond question that DNA fragmentation develops because of formation of double strand DNA breaks (DNA DSB). To record appearance and disappearance of DNA DSB we used antibodies to phosphorylated histone H2Ax (histone gamma-H2Ax.). The presence of DNA DSB was estimated in 0.05% and 6.7% of cardiomyocytes in the myocardium form C57B1 and mdx mice without stress, respectively. The part of cardiomyocytes with DNA DSB increased in an hour after stress up to 1.0% and 41.7% in C57B1 and mdx mice, respectively. In 24 h after stress, the myocardium from mdx mice contained 5.2% of gamma-H2Ax-positive cardiomyocytes and no C57B1 myocardium was found with any amount of gamma-H2Ax-positive cells. The results presented show induction of DNA damage by dynamical stress and restoration of normal DNA structure in the cells of both strains in 24 h after stress. There was no mdx mice death after used dynamical stress. To estimate the real contribution of DNA repair to the survival of cardiomyocytes we have counted the cardiomyocyte loss. Morphometric analysis demonstrated that cell concentration in myocardium from mdx mice under normal conditions was less than that one in myocardium of C57B1/6. The cell loss varied between 20% for the base and 40% for the apex of mdx mice hearts. In 24 h after stress, the cell loss in the myocardium of mdx mice amounted to 2.5%. The difference between the number of cells with damaged DNA structure and the index of the real cell loss allows concluding that DNA repair makes a real contribution to the survival of mdx mice cardiomyocytes after dynamical stress.
Download full-text PDF |
Source |
---|
Pathophysiology
January 2025
Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), Jundiaí 13202-550, Brazil.
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by a lack of dystrophin caused by mutations in the DMD gene, and some minor cases are due to decreased levels of dystrophin, leading to muscle weakness and motor impairment. Creatine supplementation has demonstrated several benefits for the muscle, such as increased strength, enhanced tissue repair, and improved ATP resynthesis. This preliminary study aimed to investigate the effects of creatine on the gastrocnemius muscle in dystrophy muscle (MDX) and healthy C57BL/10 mice.
View Article and Find Full Text PDFMuscle Nerve
January 2025
Department of Anatomy, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil.
Introduction/aims: Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene, making muscle fibers susceptible to contraction-induced membrane damage. Given the potential beneficial action of cannabidiol (CBD), we evaluated the in vitro effect of full-spectrum CBD oil on the viability of dystrophic muscle fibers and the in vivo effect on myopathy of the mdx mouse, a DMD model.
Methods: In vitro, dystrophic cells from the mdx mouse were treated with full-spectrum CBD oil and assessed with cell viability and cytotoxic analyses.
Am J Pathol
January 2025
Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095. Electronic address:
Duchenne muscular dystrophy (DMD) is a lethal, muscle-wasting, genetic disease that is greatly amplified by an immune response to the diseased muscles. The mdx mouse model of DMD was used to test whether the pathology can be reduced by treatments with a CTLA4-Ig fusion protein that blocks costimulatory signals required for activation of T-cells. CTLA4-Ig treatments reduced mdx sarcolemma lesions and reduced the numbers of activated T-cells, macrophages and antigen presenting cells in mdx muscle and reduced macrophage invasion into muscle fibers.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFbioRxiv
January 2025
Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, TX, USA.
Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!