The phosphoinositide 3-kinase (PI3K)/3-phosphoinositide-dependent protein kinase 1 (PDK1)/Akt pathway regulates various cellular functions, especially cell survival and cell cycle progression. In contrast to other survival pathways, there have been few reports of scaffold proteins that regulate signaling cascade specificity in this pathway. Here we identify a 5' repressor element under dual-repression binding protein 1 (Freud-1)/Akt kinase-interacting protein 1 (Aki1) as a novel scaffold for the PDK1/Akt pathway. Freud-1/Aki1 (also known as CC2D1A) expression induced formation of a PDK1/Akt complex and regulated Akt activation in a concentration-dependent biphasic manner. Freud-1/Aki1 also associated with epidermal growth factor (EGF) receptor in response to EGF stimulation and was required for Akt activation induced by EGF, but not by insulin-like growth factor 1. Freud-1/Aki1 gene silencing decreased Akt kinase activity, resulting in induction of apoptosis and increased sensitivity toward chemotherapeutic agents. Our results suggest that Freud-1/Aki1 is a novel receptor-selective scaffold protein for the PDK1/Akt pathway and present a new activation mechanism of Akt.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2546995 | PMC |
http://dx.doi.org/10.1128/MCB.00114-08 | DOI Listing |
Cells
December 2024
Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain.
Autophagy is a catabolic process involved in different cellular functions. However, the molecular pathways governing its potential roles in different cell types remain poorly understood. We investigated the role of autophagy in the context of proteotoxic stress in two central nervous system cell types: the microglia-like cell line BV2 and the neuronal-like cell line N2a.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China.
Background: The T790M mutation in the epidermal growth factor receptor (EGFR) gene is the primary cause of resistance to EGFR-tyrosine kinase inhibitor (TKI) therapy in non-small cell lung cancer (NSCLC) patients. Previous research demonstrated that certain traditional Chinese medicine (TCM) monomers exhibit anti-tumor effects against various malignancies. This study aims to investigate the potentials of shikonin screened from a TCM monomer library containing 1060 monomers in killing EGFR-T790M drug-resistant NSCLC cells and elucidate the underlying mechanisms.
View Article and Find Full Text PDFJ Adv Res
December 2024
Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, China; Lead Contact. Electronic address:
Introduction: Altered epigenetic reprogramming enables breast cancer cells to adapt to hypoxic stress. Hypoxic microenvironment can alter immune cell infiltration and function, limiting the effectiveness of immunotherapy.
Objectives: The study aimed to identify how fat mass and obesity-associated protein (FTO) helps breast cancer cells cope with the hypoxic microenvironment and the mechanisms behind breast cancer cell resistance to tumor immunity.
Chem Biol Interact
October 2023
College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China. Electronic address:
Fluoride, an environmental toxicant, not only arouses intestinal microbiota dysbiosis, but also causes neuronal apoptosis and a decline in learning and memory ability. The purpose of this study was to explore whether fecal microbiota transplantation (FMT) from healthy mice and bacteria-derived metabolites short-chain fatty acids (SCFAs) supplement protect against fluoride-induced learning and memory impairment. Results showed that FMT reversed the elevated percentage of working memory errors (WME) and reference memory errors (RME) in fluorosis mice during the eight-arm maze test.
View Article and Find Full Text PDFBiomolecules
September 2024
Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, 41124 Modena, Italy.
Galectin-3 (Gal-3) is a pleiotropic lectin produced by most cell types, which regulates multiple cellular processes in various tissues. In bone, depending on its cellular localization, Gal-3 has a dual and opposite role. If, on the one hand, intracellular Gal-3 promotes bone formation, on the other, its circulating form affects bone remodeling, antagonizing osteoblast differentiation and increasing osteoclast activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!