Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability.

Mol Cell Biol

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

Published: October 2008

The Mcm2-7 (minichromosome maintenance) complex is a toroidal AAA(+) ATPase and the putative eukaryotic replicative helicase. Unlike a typical homohexameric helicase, Mcm2-7 contains six distinct, essential, and evolutionarily conserved subunits. Precedence to other AAA(+) proteins suggests that Mcm ATPase active sites are formed combinatorially, with Walker A and B motifs contributed by one subunit and a catalytically essential arginine (arginine finger) contributed by the adjacent subunit. To test this prediction, we used copurification experiments to identify five distinct and stable Mcm dimer combinations as potential active sites; these subunit associations predict the architecture of the Mcm2-7 complex. Through the use of mutant subunits, we establish that at least three sites are active for ATP hydrolysis and have a canonical AAA(+) configuration. In isolation, these five active-site dimers have a wide range of ATPase activities. Using Walker B and arginine finger mutations in defined Mcm subunits, we demonstrate that these sites similarly make differential contributions toward viability and ATP hydrolysis within the intact hexamer. Our conclusions predict a structural discontinuity between Mcm2 and Mcm5 and demonstrate that in contrast to other hexameric helicases, the six Mcm2-7 active sites are functionally distinct.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2547011PMC
http://dx.doi.org/10.1128/MCB.00161-08DOI Listing

Publication Analysis

Top Keywords

active sites
16
atp hydrolysis
12
arginine finger
8
sites
6
mcm2-7
5
active
5
subunit
4
subunit organization
4
organization mcm2-7
4
mcm2-7 unequal
4

Similar Publications

Construction and optimization of stable atomically dispersed metal sites on SiO surfaces are important yet challenging topics. In this work, we developed the amino group-assisted atomic layer deposition strategy to deposit the atomically dispersed Pt on SiO support for the first time, in which the particle size and ratio of Pt entities from single atom (Pt) to atomic cluster (Pt ) and nanoparticle (Pt ) on the SiO surface were well modulated. We demonstrated the importance of dual-site synergy for optimizing the activity of single-atom catalysts.

View Article and Find Full Text PDF

The creation of spatially coupled meso-/microenvironments with biomimetic compartmentalized functionalities is of great significance to achieve efficient signal transduction and amplification. Herein, using a soft-template strategy, UiO-67-type hierarchically mesoporous metal-organic frameworks (HMMOFs) were constructed to satisfy the requirements of such an artificial system. The key to the successful synthesis of HMUiO-67 is rooted in the utilization of the preformed cerium-oxo clusters as metal precursors, aligning the growth of MOF crystals with the mild conditions required for the self-assembly of the soft template.

View Article and Find Full Text PDF

CO in coal mine underground spaces can easily cause casualties among miners. The humidity in coal mines is relatively high, and traditional Cu-Mn catalysts are prone to deactivation. Compared to traditional Cu-Mn catalysts, doping with Sn enhances the activity and water resistance of Cu-Mn catalysts.

View Article and Find Full Text PDF

Radioactive molecular iodine (I) is a critical volatile pollutant generated in nuclear energy applications, necessitating sensors that rapidly and selectively detect low concentrations of I vapor to protect human health and the environment. In this study, we design and prepare a three-component sensing material comprising reduced graphene oxide (rGO) as the substrate, silver iodide (AgI) particles as active sites, and polystyrene sulfonate as an additive. The AgI particles enable reversible adsorption and conversion of I molecules into polyiodides, inducing substantial charge density variation in rGO.

View Article and Find Full Text PDF

Designing asymmetrical structures is an effective strategy to optimize metallic catalysts for electrochemical carbon dioxide reduction reactions. Herein, we demonstrate a transient pulsed discharge method for instantaneously constructing graphene-aerogel supports asymmetric copper nanocluster catalysts. This process induces the convergence of copper atoms decomposed by copper chloride onto graphene originating from the intense current pulse and high temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!