Neuropathological, epidemiological and experimental data indicate a potential interrelationship between Alzheimer's disease and prion diseases. Proteolytic processing of amyloid precursor protein (APP) by beta-secretase was recently suggested to be controlled by prion protein expression. Here, we characterized the prion infection of Tg2576 mice, which overexpress the human APP(Swe) protein. Prion infection of Tg2576-mice led to an early death of the animals, which was preceded by a relatively short symptomatic stage. However, disease-associated gliosis and deposition of misfolded prion protein PrP(Sc) were identical in infected Tg2576-mice and non-transgenic littermate controls. To analyze the effect of prion infection on APP processing and generation of beta-amyloid we determined cortical levels of SDS- and formic acid (FA)-extractable forms of beta-amyloid (1-40) and (1-42) by ELISA. Formic acid-extractable Abeta (1-42) levels were 10-fold higher in infected versus uninfected Tg2576 mice whereas other forms of Abeta were essentially unaffected by the prion infection. Hence, the experimental model demonstrates that a prion infection of the CNS promotes selectively formation of FA-extractable Abeta(1-42) in Tg2576 mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijdevneu.2008.07.001 | DOI Listing |
Alzheimers Dement
December 2024
Colorado State University, Fort Collins, CO, USA.
Background: In tauopathies, the protein tau misfolds into a b-sheet conformation that self-templates and spreads throughout the brain causing progressive degeneration. Biological and structural data have shown that the shape, or strain, that tau adopts when it misfolds determines which disease a patient will develop. We previously used HEK293T cells expressing TauRD-YFP to show that tau strain formation is isoform-specific.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Peking University, Beijing, Beijing, China.
Background: Prion diseases are a group of neurodegenerative diseases associated with prion protein. The disease can be caused by mutations in the PRNP gene, the gene that encodes prion protein. An octapeptide repeat on the N-terminus of prion protein plays an important role in normal intercellular function of prion protein.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Malaga/CIBERNED/IBIMA, Málaga, Spain.
Background: Alzheimer's Disease (AD) is a neurodegenerative proteinopathy in which Aβ can misfold and aggregate into seeds that structurally corrupt native proteins, mimicking a prion-like process. These amyloid aggregation and propagation processes are influenced by three factors: the origin of the Aβ seed, time of incubation and host. However, the mechanism underlying the differential effect of each factor is poorly known.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Southampton, Southampton, United Kingdom.
Background: Systemic inflammation in patients with Alzheimer's disease (AD) has been associated with an exacerbation in cognitive decline, but the underlying mechanisms remain largely unknown. In AD, intraneuronal hyperphosphorylated tau spreads through the brain via trans-synaptic prion-like propagation. Evidence suggests that propagation of tau pathology is linked to neuroinflammation.
View Article and Find Full Text PDFJ Mol Graph Model
December 2024
Department of Chemistry, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
The human prion protein gene (PRNP) consists of two common alleles that encode either methionine or valine residues at codon 129. Polymorphism at codon 129 of the prion protein (PRNP) gene is closely associated with genetic variations and susceptibility to specific variants of prion diseases. The presence of these different alleles, known as the PRNP codon 129 polymorphism, plays a significant role in disease susceptibility and progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!