The basis for a dual inhibitory and mutagenic activity of 5-fluorouracil (5-FU) on foot-and-mouth disease virus (FMDV) RNA replication has been investigated with purified viral RNA-dependent RNA polymerase (3D) in vitro. 5-Fluorouridine triphosphate acted as a potent competitive inhibitor of VPg uridylylation, the initial step of viral replication. Peptide analysis by mass spectrometry has identified a VPg fragment containing 5-fluorouridine monophosphate (FUMP) covalently attached to Tyr3, the amino acid target of the uridylylation reaction. During RNA elongation, FUMP was incorporated in the place of UMP or CMP by FMDV 3D, using homopolymeric and heteropolymeric templates. Incorporation of FUMP did not prevent chain elongation, and, in some sequence contexts, it favored misincorporations at downstream positions. When present in the template, FUMP directed the incorporation of AMP and GMP, with ATP being a more effective substrate than GTP. The misincorporation of GMP was 17-fold faster opposite FU than opposite U in the template. These results in vitro are consistent with the mutational bias observed in the mutant spectra of 5-FU-treated FMDV populations. The dual mutagenic and inhibitory activity of 5-fluorouridine triphosphate may contribute to the effective extinction of FMDV by 5-FU through virus entry into error catastrophe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2008.07.033 | DOI Listing |
Nucleic Acids Res
June 2024
Institute of Biology, Department of Microbiology, Universität Kassel, Kassel 34132, Germany.
Therapeutic fluoropyrimidines 5-fluorouracil (5-FU) and 5-fluorocytosine (5-FC) are in long use for treatment of human cancers and severe invasive fungal infections, respectively. 5-Fluorouridine triphosphate represents a bioactive metabolite of both drugs and is incorporated into target cells' RNA. Here we use the model fungus Saccharomyces cerevisiae to define fluorinated tRNA as a key mediator of 5-FU and 5-FC cytotoxicity when specific tRNA methylations are absent.
View Article and Find Full Text PDFCurr Pharm Des
August 2022
School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, 14800-903, Brazil.
5-Fluorouracil (5-FU) is an antimetabolite drug used for over 70 years as first-line chemotherapy to treat various types of cancer, such as head, neck, breast, and colorectal cancer. 5-FU acts mainly by inhibiting thymidylate synthase, thereby interfering with deoxyribonucleic acid (DNA) replication or by 5-FU incorporating into DNA, causing damage to the sequence of nucleotides. Being analogous to uracil, 5-FU enters cells using the same transport mechanism, where a is converted into active metabolites such as fluorouridine triphosphate (FUTP), fluorodeoxyuridine monophosphate (FdUMP), and fluorodeoxyuridine triphosphate (FdUTP).
View Article and Find Full Text PDFAAPS J
January 2021
Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
Capecitabine is an oral pro-drug of 5-fluorouracil. Patients with solid tumours who are treated with capecitabine may develop hand-and-foot syndrome (HFS) as side effect. This might be a result of accumulation of intracellular metabolites.
View Article and Find Full Text PDFSci Adv
October 2020
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA.
RNAs form critical components of biological processes implicated in human diseases, making them attractive for small-molecule therapeutics. Expanding the sites accessible to nuclear magnetic resonance (NMR) spectroscopy will provide atomic-level insights into RNA interactions. Here, we present an efficient strategy to introduce F-C spin pairs into RNA by using a 5-fluorouridine-5'-triphosphate and T7 RNA polymerase-based in vitro transcription.
View Article and Find Full Text PDFPharm Res
May 2020
Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
Purpose: Capecitabine is an oral pre-pro-drug of the anti-cancer drug 5-fluorouracil (5-FU). The biological activity of the 5-FU degrading enzyme, dihydropyrimidine dehydrogenase (DPD), and the target enzyme thymidylate synthase (TS), are subject to circadian rhythmicity in healthy volunteers. The aim of this study was to determine the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), safety, pharmacokinetics (PK) and pharmacodynamics (PD) of capecitabine therapy adapted to this circadian rhythm (chronomodulated therapy).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!