In quiescent cells, mitochondria are the primary source of reactive oxygen species (ROS), which are generated by leakiness of the electron transport chain (ETC). High levels of ROS can trigger cell death, whereas lower levels drive diverse and important cellular functions. We show here by employing a newly developed mitochondrial matrix-targeted superoxide indicator, that individual mitochondria undergo spontaneous bursts of superoxide generation, termed "superoxide flashes." Superoxide flashes occur randomly in space and time, exhibit all-or-none properties, and provide a vital source of superoxide production across many different cell types. Individual flashes are triggered by transient openings of the mitochondrial permeability transition pore stimulating superoxide production by the ETC. Furthermore, we observe a flurry of superoxide flash activity during reoxygenation of cardiomyocytes after hypoxia, which is inhibited by the cardioprotective compound adenosine. We propose that superoxide flashes could serve as a valuable biomarker for a wide variety of oxidative stress-related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2547996PMC
http://dx.doi.org/10.1016/j.cell.2008.06.017DOI Listing

Publication Analysis

Top Keywords

superoxide flashes
12
superoxide
8
superoxide production
8
flashes single
4
single mitochondria
4
mitochondria quiescent
4
quiescent cells
4
cells mitochondria
4
mitochondria primary
4
primary source
4

Similar Publications

An intrinsic metal cluster NIR-II emission of the {Ta6Br12}2+ aqua/hydroxocomplexes was determined in aqueous solutions under inert atmosphere. The photoluminescence (PL) is enhanced in D2O, and the lifetime scale expands from nanoseconds to microseconds. Possible cluster emission transitions have been assigned and analyzed from a computational perspective.

View Article and Find Full Text PDF

Flashes of superoxide anion (O) in mitochondria are generated spontaneously or during the opening of the permeability transition pore (mPTP) and a sudden change in the metabolic state of a cell. Under certain conditions, O can leave the mitochondrial matrix and perform signaling functions beyond mitochondria. In this work, we studied the kinetics of the release of O and HO from isolated mitochondria upon mPTP opening and the modulation of the metabolic state of mitochondria by the substrates of respiration and oxidative phosphorylation.

View Article and Find Full Text PDF

Ultra-high dose rate FLASH radiotherapy, a promising cancer treatment approach, offers the potential to reduce healthy tissue damage during radiotherapy. As the mechanisms underlying this process remain unknown, several hypotheses have been proposed, including the altered production of radio-induced species under ultra-high dose rate (UHDR) conditions. This study explores realistic irradiation scenarios with various dose-per-pulse and investigates the role of pulse temporal structure.

View Article and Find Full Text PDF

Integration of Mitoflash and Time-Series Transcriptomics Facilitates Energy Dynamics Tracking and Substrate Supply Analysis of Floral Thermogenesis in Lotus.

Plant Cell Environ

January 2025

National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China.

The high biosynthetic and energetic demands of floral thermogenesis render thermogenic plants the ideal systems to characterize energy metabolism in plants, but real-time tracking of energy metabolism in plant cells remains challenging. In this study, a new method was developed for tracking the mitochondrial energy metabolism at the single mitochondria level by real-time imaging of mitochondrial superoxide production (i.e.

View Article and Find Full Text PDF

Purpose: Ochratoxin A (OTA) contamination of food and feed is a serious problem worldwide. OTA is considered a carcinogen and immunotoxic, nephrotoxic, and neurotoxic mycotoxin. The present study aims to determine the toxic effects of OTA on retinal ganglion cells (RGCs) and assess the resulting impairment of retinal function in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!