Ralstonia solanacearum is a widely distributed phytopathogenic bacterium that is known to invade more than 200 host species, mainly in tropical areas. Reference strain GMI1000 is naturally transformable at in vitro and also in planta conditions and thus has the ability to acquire free exogenous DNA. We tested the ubiquity and variability of natural transformation in the four phylotypes of this species complex using 55 strains isolated from different hosts and geographical regions. Eighty per cent of strains distributed in all the phylotypes were naturally transformable by plasmids and/or genomic DNA. Transformability can be considered as a ubiquitous physiological trait in the R. solanacearum species complex. Transformation performed with two independent DNA donors showed that multiple integration events occurred simultaneously in two distant genomic regions. We also engineered a fourfold-resistant R. solanacearum GMI1000 mutant RS28 to evaluate the size of DNA exchanged during natural transformation. The results demonstrated that this bacterium was able to exchange large DNA fragments ranging from 30 to 90 kb by DNA replacement. The combination of these findings indicated that the natural transformation mechanism could be the main driving force of genetic diversification of the R. solanacearum species complex.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2008.00552.xDOI Listing

Publication Analysis

Top Keywords

natural transformation
16
species complex
16
solanacearum species
12
ralstonia solanacearum
8
size dna
8
naturally transformable
8
dna
7
solanacearum
5
species
5
natural
4

Similar Publications

Segregation-to-integration transformation model of memory evolution.

Netw Neurosci

December 2024

Department of Cognition, Development and Education Psychology, University of Barcelona, Barcelona, Spain.

Memories are thought to use coding schemes that dynamically adjust their representational structure to maximize both persistence and efficiency. However, the nature of these coding scheme adjustments and their impact on the temporal evolution of memory after initial encoding is unclear. Here, we introduce the Segregation-to-Integration Transformation (SIT) model, a network formalization that offers a unified account of how the representational structure of a memory is transformed over time.

View Article and Find Full Text PDF

Impacts of birth season and production system on gastrointestinal parasitism and growth in Katahdin lambs.

Transl Anim Sci

December 2024

Cooperative Research, College of Agriculture, Environmental and Human Sciences, Lincoln University of Missouri, Jefferson City, MO 65102, USA.

Gastrointestinal nematode (GIN) infection adversely affects the performance and well-being of forage-based sheep throughout the world. The study objectives were to estimate longitudinal differences between birth seasons and production systems for lamb postweaning growth and indicators of GIN infection. Data were collected on Katahdin lambs within a single flock from 2006 to 2022.

View Article and Find Full Text PDF

Castration-resistant prostate cancer (CRPC) presents significant therapeutic challenges due to its aggressive nature and poor prognosis. Targeting Aurora-A kinase (AURKA) has shown promise in cancer treatment. This study investigates the efficacy of ART-T cell membrane-encapsulated AMS@AD (CM-AMS@AD) nanoparticles (NPs) in a photothermal-chemotherapy-immunotherapy combination for CRPC.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder caused by mutations in the NF1 gene, affecting approximately 1 in 3 000 newborns worldwide. Plexiform neurofibroma (PNF) is one of the common clinical manifestations of NF1. PNF can lead to a range of clinical symptoms, with a high rate of disability and teratogenesis; furthermore, there is a risk for malignant transformation that poses significant threats to the life and health of patients.

View Article and Find Full Text PDF

Effects of dimethylarsenate coprecipitation with ferrihydrite on Fe(II)-induced mineral transformation and the release of dimethylarsenate.

Environ Pollut

December 2024

Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan 430070, China. Electronic address:

Organoarsenicals are toxic pollutants of global concern, and their environmental geochemical behavior might be greatly controlled by iron (Fe) (hydr)oxides through coprecipitation, which is rarely investigated. Here, the effects of the incorporation of dimethylarsenate (DMAs(V)), a typical organoarsenical, into the ferrihydrite (Fh) structure on the mineral physicochemical properties and Fe(II)-induced phase transformation of DMAs(V)-Fh coprecipitates with As/Fe molar ratios up to 0.0876±0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!