Patterning of conducting polymers using charged self-assembled monolayers.

Langmuir

National Creative Research Initiative, Center for Smart Molecular Memory, IT Convergence Technology Research Division, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 South Korea.

Published: September 2008

We introduce a new approach to pattern conducting polymers by combining oppositely charged conducting polymers on charged self-assembled monolayers (SAMs). The polymer resist pattern behaves as a physical barrier, preventing the formation of SAMs. The patterning processes were carried out using commercially available conducting polymers: a negatively charged PEDOT/PSS (poly(3,4-ethylene-dioxythiophene)/poly(4-stylenesulphonic acid)) and a positively charged polypyrrole (PPy). A bifunctional NH 2 (positively charged) or COOH (negatively charged) terminated alkane thiol or silane was directly self-assembled on a substrate (Au or SiO 2). A suspension of the conducting polymers (PEDOT/PSS and PPy) was then spin-coated on the top surface of the SAMs and allowed to adsorb on the oppositely charged SAMs via an electrostatic driving force. After lift-off of the polymer resist, i.e., poly(methyl methacrylate, PMMA), using acetone, the conducting polymers remained on the charged SAMs surface. Optical microscopy, Auger electron spectroscopy, and atomic force microscopy reveal that the prepared nanolines have low line edge roughness and high line width resolution. Thus, conducting polymer patterns with high resolution could be produced by simply employing charged bifunctional SAMs. It is anticipated that this versatile new method can be applied to device fabrication processes of various nano- and microelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la8014207DOI Listing

Publication Analysis

Top Keywords

conducting polymers
24
charged
10
polymers charged
8
charged self-assembled
8
self-assembled monolayers
8
oppositely charged
8
polymer resist
8
negatively charged
8
positively charged
8
charged sams
8

Similar Publications

Clinical performance of minimally invasive full-mouth rehabilitation using different materials and techniques for patients with moderate to severe tooth wear: a systematic review and meta-analysis.

Clin Oral Investig

January 2025

Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, Zhejiang, China.

Objective: To evaluate short, mid and long-term clinical outcomes and patients' satisfaction of minimally invasive full-mouth rehabilitation using different materials and techniques for patients with moderate to severe tooth wear. Furthermore, materials were analyzed to identify their influences on clinical results.

Materials And Methods: Search was conducted in PubMed, Cochrane Central Register of Controlled Trial, Embase, Web of science and Scopus until December 19, 2024.

View Article and Find Full Text PDF

Fiber-reinforced polymer composites are subjected to harsh environmental conditions over the course of their designed lifespan. Studying the aging process of fiber-reinforced polymer composites exposed to boiling water is critical for improving their durability. This study uses a hand lay-up technique to fabricate composites from glass fiber, bamboo fiber, nanoclay, and epoxy.

View Article and Find Full Text PDF

The impact of three-dimensional (3D) dose delivery accuracy of C-arm linacs on the planning target volume (PTV) margin was evaluated for non-coplanar intracranial stereotactic radiosurgery (SRS). A multi-institutional 3D starshot test using beams from seven directions was conducted at 22 clinics using Varian and Elekta linacs with X-ray CT-based polymer gel dosimeters. Variability in dose delivery accuracy was observed, with the distance between the imaging isocenter and each beam exceeding 1 mm at one institution for Varian and nine institutions for Elekta.

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

Optimized Cerium vanadate catalytic host with simple heterostructure engineering achieving regulated polysulfide deposition for high-performance Lithium-Sulfur batteries under harsh conditions.

J Colloid Interface Sci

January 2025

Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China. Electronic address:

Meliorating the behavior deposition of lithium polysulfides (LiPS) is crucial for enhancing the electrochemical performance of sulfur cathodes, which could be implemented by the precise modulation on the catalytic host. Herein, heterostructure engineering is employed to tune up the catalytic capability of CeVO, by introducing CeO through a simple adjustment in the addition sequence of reactants. The formed CeVO/CeO heterostructure has been demonstrated to exhibit appropriate interaction strength with LiPS for accelerating the catalytic conversion process, as well as an engineered surface for inducing three dimensional (3D) LiS deposition, thereby endowing the corresponding sulfur cathodes with excellent electrochemical performance under harsh conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!