Correlation between dielectric/organic interface properties and key electrical parameters in PPV-based OFETs.

J Phys Chem B

Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), via P. Gobetti 101, I-40129 Bologna, Italy.

Published: August 2008

We report on the influence of the dielectric/organic interface properties on the electrical characteristics of field-effect transistors based on polyphenylenevinylene derivatives. Through a systematic investigation of the most common dielectric surface treatments, a direct correlation of their effect on the field-effect electrical parameters, such as charge carrier mobility, On/Off current ratio, threshold voltage, and current hysteresis, has been established. It is found that the presence of OH groups at the dielectric surface, already known to act as carrier traps for electrons, decreases the hole mobility whereas it does not substantially affect the other electrical characteristics. The treatment of silicon dioxide surfaces with gas phase molecules such as octadecyltrichlorosilane and hexamethyldisilazane leads to an improvement in hole mobility as well as to a decrease in current hysteresis. The effects of a dielectric polymer layer spin coated onto silicon dioxide substrates before deposition of the semiconductor polymer can be related not only to the OH groups density but also to the interaction between the dielectric and the semiconductor molecules. Specifically, the elimination of the OH groups produces the same effect observed with hexamethyldisilazane. The hole mobility values obtained with hexamethyldisilazane and polymer dielectrics are the highest reported to date for PPV-based field-effect transistors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp8012255DOI Listing

Publication Analysis

Top Keywords

hole mobility
12
dielectric/organic interface
8
interface properties
8
electrical parameters
8
electrical characteristics
8
field-effect transistors
8
dielectric surface
8
current hysteresis
8
silicon dioxide
8
correlation dielectric/organic
4

Similar Publications

N-oxide-Functionalized Bipyridines as Strong Electron-Deficient Units to Construct High-Performance n-Type Conjugated Polymers.

Adv Sci (Weinh)

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, No.189, Jiuhua South Road, Wuhu, Anhui, 241002, China.

Developing low-cost unipolar n-type organic thin-film transistors (OTFTs) is necessary for logic circuits. To achieve this objective, the usage of new electron-deficient building blocks with simple structure and easy synthetic route is desirable. Among all electron-deficient building units, N-oxide-functionalized bipyridines can be prepared through a simple oxidized transformation of bipyridines.

View Article and Find Full Text PDF

Synthesis and Optoelectronic Characterizations of Conjugated Polymers Based on Diketopyrrolopyrrole and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile Via Knoevenagel Condensation.

Macromol Rapid Commun

January 2025

State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.

Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.

View Article and Find Full Text PDF

With the development of diamond technology, its application in the field of electronics has become a new research hotspot. Hydrogen-terminated diamond has the electrical properties of P-type conduction due to the formation of two-dimensional hole gas (2DHG) on its surface. However, due to various scattering mechanisms on the surface, its carrier mobility is limited to 50-200 cm/(Vs).

View Article and Find Full Text PDF

The transient dynamics of photocurrents for poly((4-diphenylamino)benzyl acrylate) (PDAA)-based photorefractive (PR) polymers sensitized with perylene bisimide derivative N,N'-diisopropylphenyl-1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxyl bisimide (PBI) at various composition ratios were studied. The PR polymer included (4-(diphenylamino)phenyl)methanol (TPAOH) photoconductive plasticizer and (4-(azepan-1-yl)-benzylidene) malononitrile nonlinear optical dye as well, which are needed for inducing PR effects. All the photocurrents measured at 640 nm were well simulated by a two-trapping site model considering photocarrier generation and recombination processes of the charge transfer (CT) complex between PBI and PDAA.

View Article and Find Full Text PDF

Low-color-temperature candlelight organic light-emitting diodes (OLEDs) offer a healthier lighting alternative by minimizing blue light exposure, which is known to disrupt circadian rhythms, suppress melatonin, and potentially harm the retina with prolonged use. In this study, we explore the integration of transition metal dichalcogenides (TMDs), specifically molybdenum disulfide (MoS) and tungsten disulfide (WS), into the hole injection layers (HILs) of OLEDs to enhance their performance. The TMDs, which are known for their superior carrier mobility, optical properties, and 2D layered structure, were doped at levels of 0%, 5%, 10%, and 15% in PEDOT:PSS-based HILs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!