Platelet derived growth factor (PDGF) is involved in the autocrine growth stimulation of normal and malignant cells, the stimulation of angiogenesis, and the recruitment and regulation of tumor fibroblasts. PDGF has been shown to physically interact with glycosaminoglycans which are abundant in the extracellular microenvironment. The present review discusses the effects of glycosaminoglycans on the functions mediated by the PDGF on cells of mesenchymal origin. Recent studies have demonstrated that both soluble and surface bound glycosaminoglycan chains can modulate PDGF-BB isoform signaling depending on the cell type. These data demonstrated that the microenvironment rich in GAGs/PGs is able to significantly modify the cellular response to PDGF-BB signaling in a critical way for cell growth and differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03008200802148702DOI Listing

Publication Analysis

Top Keywords

glycosaminoglycans pdgf
4
pdgf signaling
4
signaling mesenchymal
4
mesenchymal cells
4
cells platelet
4
platelet derived
4
derived growth
4
growth factor
4
factor pdgf
4
pdgf involved
4

Similar Publications

Background: Cord blood platelets, easily obtained from blood units not suitable for hematopoietic stem cell transplantation, represent an abundant source of growth factors for use in wound healing. Although several protocols have been described for platelet lysate production, no standard manufacturing protocol is available. The use of pooled cord blood platelets could thus facilitate standardization.

View Article and Find Full Text PDF

ALB-PRF facilitates chondrogenesis by promoting chondrocytes migration, proliferation and differentiation.

Platelets

December 2024

Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.

Cartilage injury is common in orthopedics and cartilage tissue engineering provides a therapeutic direction for cartilage regeneration. Albumin (ALB)-platelet-rich fibrin (PRF) is speculated to be an ideal natural scaffold material for cartilage tissue engineering theoretically as a product derived from human venous blood. Through and experiments, it was demonstrated that ALB-PRF displayed porous structure and slowly released growth factors (TGF-β1, PDGF-AA, PDGF-AB, PDGF-BB, EGF, IGF-1 and VEGF), ALB-PRF conditioned media promoted proliferation, migration, adhesion, phenotype maintenance and extracellular matrix secretion of rabbit chondrocytes.

View Article and Find Full Text PDF

Cyclosporin A inhibits PDGF-BB induced hyaluronan synthesis in orbital fibroblasts.

Chem Biol Interact

June 2024

Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Nagyerdei krt. 98, Hungary. Electronic address:

Orbital connective tissue changes are contributors to the pathogenesis in thyroid eye disease (TED). Activated fibroblasts respond to immune stimuli with proliferation and increased hyaluronan (HA) production. Cyclosporin A (CsA) was reported to be beneficial in the treatment of TED.

View Article and Find Full Text PDF

Background: Safe, efficacious therapy for treating degenerate deep digital flexor tendon (DDFT) and navicular bone fibrocartilage (NBF) in navicular horses is critically necessary. While archetypal orthobiologic therapies for navicular disease are used empirically, their safety and efficacy are unknown. Mesenchymal stem cell-derived extracellular vesicles (EV) may overcome several limitations of current orthobiologic therapies.

View Article and Find Full Text PDF

In Situ Remodeling of Efferocytosis via Lesion-Localized Microspheres to Reverse Cartilage Senescence.

Adv Sci (Weinh)

May 2024

Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, P. R. China.

Efferocytosis, an intrinsic regulatory mechanism to eliminate apoptotic cells, will be suppressed due to the delayed apoptosis process in aging-related diseases, such as osteoarthritis (OA). In this study, cartilage lesion-localized hydrogel microspheres are developed to remodel the in situ efferocytosis to reverse cartilage senescence and recruit endogenous stem cells to accelerate cartilage repair. Specifically, aldehyde- and methacrylic anhydride (MA)-modified hyaluronic acid hydrogel microspheres (AHM), loaded with pro-apoptotic liposomes (liposomes encapsulating ABT263, A-Lipo) and PDGF-BB, namely A-Lipo/PAHM, are prepared by microfluidic and photo-cross-linking techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!