Identification of Quantitative Trait Loci and candidate genes influencing ethanol sensitivity in honey bees.

Behav Genet

Department of Entomology, Purdue University, West Lafayette, IN 47907-1158, USA.

Published: September 2008

Invertebrate models have greatly furthered our understanding of ethanol sensitivity and alcohol addiction. The honey bee (Apis mellifera), a widely used behavioral model, is valuable for comparative studies. A quantitative trait locus (QTL) mapping experiment was designed to identify QTL and genes influencing ethanol vapor sensitivity. A backcross mating between ethanol-sensitive and resistant lines resulted in worker offspring that were tested for sensitivity to the sedative effects of alcohol. A linkage map was constructed with over 500 amplified fragment length polymorphism (AFLP) and sequence-tagged site (STS) markers. Four QTL were identified from three linkage groups with log of odds ratio (LOD) scores of 2.28, 2.26, 2.23, and 2.02. DNA from markers within and near QTL were cloned and sequenced, and this data was utilized to integrate our map with the physical honey bee genome. Many candidate genes were identified that influence synaptic transmission, neuronal growth, and detoxification. Others affect lipid synthesis, apoptosis, alcohol metabolism, cAMP signaling, and electron transport. These results are relevant because they present the first search for QTL that affect resistance to acute ethanol exposure in an invertebrate, could be useful for comparative genomic purposes, and lend credence to the use of honey bees as biomedical models of alcohol metabolism and sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10519-008-9218-zDOI Listing

Publication Analysis

Top Keywords

quantitative trait
8
candidate genes
8
genes influencing
8
influencing ethanol
8
ethanol sensitivity
8
honey bees
8
honey bee
8
markers qtl
8
alcohol metabolism
8
sensitivity
5

Similar Publications

Deep learning-based morphometric analysis of zebrafish is widely utilized for non-destructively identifying abnormalities and diagnosing diseases. However, obtaining discriminative and continuous organ category decision boundaries poses a significant challenge by directly observing zebrafish larvae from the outside. To address this issue, this study simplifies the organ areas to polygons and focuses solely on the endpoint positioning.

View Article and Find Full Text PDF

Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Against .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.

Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.

View Article and Find Full Text PDF

Osteoarthritis (OA), particularly in the knee and hip, poses a significant global health challenge due to limited therapeutic options. To elucidate the molecular mechanisms of OA and identify potential biomarkers and therapeutic targets, we utilized genome-wide association studies (GWAS) and cis-miRNA expression quantitative trait loci (cis-miR-eQTL) datasets to identify miRNAs associated with OA, revealing 16 that were linked to knee OA and 21 to hip OA. Among these, hsa-miR-1303 was significantly upregulated in both knee and hip OA (IVW: = 6.

View Article and Find Full Text PDF

The genus includes numerous species, both cultivated and wild, offering significant genetic variability and economic potential that are often overlooked. Due to their high variability and ecological plasticity, jujube species and genotypes can be utilized in marginal areas and on land where few plants could be efficiently exploited. This study investigated variations in morphological characteristics (qualitative and quantitative), bioactive content (e.

View Article and Find Full Text PDF

Comparative Study on Growth Characteristics and Early Selection Efficiency of Hybrid Offspring of 'DD-109' and in Liaoning, China.

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.

Poplar is an important tree species for timber supply and ecological protection in northern China. Cultivating and selecting high-quality varieties and germplasm resources suitable for cultivation are key factors in enhancing the quality and productivity of poplar plantations in the arid and semi-arid northern regions with shorter growing seasons. This study conducted a field cultivation experiment on 10 progeny clones from the direct cross (D × M) of imported 'DD-109' with and 7 progeny clones from the reciprocal cross (M × D) using one-year-old rooted cuttings planted at a 4 m × 8 m spacing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!