Tyrosine phosphorylation in semaphorin signalling: shifting into overdrive.

EMBO Rep

Division of Molecular Oncology, Institute for Cancer Research and Treatment (IRCC), University of Torino, S.P. 142, 10060 Candiolo, Torino, Italy.

Published: September 2008

AI Article Synopsis

  • Semaphorins are a diverse family of signaling molecules involved in regulating processes like neuronal development, angiogenesis, cancer progression, and immune responses.
  • Accumulating evidence suggests that the effects of semaphorins vary based on the cell type and the specific receptor complexes involved, including various tyrosine kinases that can mediate different signaling pathways.
  • Tyrosine phosphorylation is crucial for these signaling processes, as it can influence how plexins interact with other signaling proteins, potentially determining the specific outcomes of semaphorin signaling.

Article Abstract

The semaphorins constitute a large family of molecular signals with regulatory functions in neuronal development, angiogenesis, cancer progression and immune responses. Accumulating data indicate that semaphorins might trigger multiple signalling pathways, and mediate different and sometimes opposing effects, depending on the cellular context and the particular plexin-associated subunits of the receptor complex, which can include receptor-type or cytoplasmic tyrosine kinases such as MET, ERBB2, VEGFR2, FYN, FES, PYK2 and SRC. It has also been shown that a specific plexin can alternatively associate with different tyrosine kinase receptors, eliciting divergent signalling pathways and functional outcomes. Tyrosine phosphorylation is a pivotal post-translational protein modification that regulates intracellular signalling. Therefore, phosphorylation of tyrosines in the intracellular domain of plexins could determine or modify their interactions with additional signal transducers. Here, we discuss the potential relevance of tyrosine phosphorylation in semaphorin-induced signalling, with an emphasis on its probable role in dictating the choice between multiple pathways and functional outcomes. The identification of implicated tyrosine kinases will pave the way to target individual semaphorin-mediated functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2529352PMC
http://dx.doi.org/10.1038/embor.2008.139DOI Listing

Publication Analysis

Top Keywords

tyrosine phosphorylation
12
signalling pathways
8
tyrosine kinases
8
pathways functional
8
functional outcomes
8
tyrosine
6
signalling
5
phosphorylation semaphorin
4
semaphorin signalling
4
signalling shifting
4

Similar Publications

Short linear peptide motifs play important roles in cell signaling. They can act as modification sites for enzymes and as recognition sites for peptide binding domains. SH2 domains bind specifically to tyrosine-phosphorylated proteins, with the affinity of the interaction depending strongly on the flanking sequence.

View Article and Find Full Text PDF

Signaling pathways play key roles in many important biological processes such as cell division, differentiation, and migration. Phosphorylation site-specific antibodies specifically target proteins phosphorylated on a given tyrosine, threonine, or serine residue. Use of phospho-specific antibodies facilitates analysis of signaling pathway regulation and activity.

View Article and Find Full Text PDF

Tyrosine phosphorylation is an important post-translational modification that regulates many biochemical signaling networks in multicellular organisms. To date, 46,000 tyrosines have been observed in human proteins, but relatively little is known about the function and regulation of most of these sites. A major challenge has been producing recombinant phospho-proteins in order to test the effects of phosphorylation.

View Article and Find Full Text PDF

SMAD4 Regulates the Expression of LCK Affecting Chimeric Antigen Receptor-T Cells Proliferation Through PI3K/Akt Signaling Pathway.

J Cell Physiol

January 2025

Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.

The proliferation of CAR-T cells was hindered and cannot play its killing function well in solid tumors. And yet the regulatory mechanism of CAR-T cell proliferation is not fully understood. Here, we showed that recombinant expression of CD19CAR in T cells significantly increased the basal activation level of CAR-T cells and LCK activation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!