Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
G-protein-coupled receptors (GPCRs) represent one of the largest gene families in the human genome and have long been regarded as valuable targets for small-molecule drugs. The authors describe a new functional assay that directly monitors GPCR activation. It is based on the interaction between beta-arrestin and ligand-activated GPCRs and uses enzyme fragment complementation technology. In this format, a GPCR of interest is fused to a small (approximately 4 kDa), optimized alpha fragment peptide (termed ProLink) derived from beta-galactosidase, and beta-arrestin is fused to an N-terminal deletion mutant of beta-galactosidase (termed the enzyme acceptor [EA]). Upon activation of the receptor, the beta-arrestin-EA fusion protein binds the activated GPCR. This interaction drives enzyme fragment complementation, resulting in an active beta-galactosidase enzyme, and thus GPCR activation can be determined by quantifying beta-galactosidase activity. In this report, the authors demonstrate the utility of this technology to monitor GPCR activation and validate the approach using a Galphai-coupled GPCR, somatostatin receptor 2. Potential application to high-throughput screens in both agonist and antagonist screening modes is exemplified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1087057108321531 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!