Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity.

Circ Res

Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA, 02115, USA.

Published: August 2008

Adipose tissue (AT) can accumulate macrophages and secrete several inflammatory mediators. Despite its pivotal role in the progression of chronic inflammatory processes such as atherosclerosis, the adaptive role of immunity in obesity remains poorly explored. Visceral AT of diet-induced obese C57BL/6 mice had higher numbers of both CD4(+) and CD8(+) T cells than lean controls, monitored by flow cytometry. When stimulated in vitro, T cells from obese AT produced more interferon (IFN)gamma than those from controls. AT from obese animals also had more cells expressing I-A(b), a mouse class II histocompatibility marker implicated in antigen presentation, as determined by immunostaining. Differentiated 3T3-L1 cells stimulated with recombinant IFNgamma or T-helper 1-derived supernatant produced several chemokines and their mRNAs. Obese IFNgamma-deficient animals had significantly reduced AT expression of mRNA-encoding inflammatory genes such as tumor necrosis factor-alpha and monocyte chemoattractant protein-1, decreased AT inflammatory cell accumulation, and better glucose tolerance than control animals consuming the same diet. Obese mice doubly deficient for IFNgamma receptor and apolipoprotein (Apo)E on a mixed 129SvEv/C57BL/6 (129/B6) genetic background, despite exhibiting similar AT mRNA levels of tumor necrosis factor-alpha and monocyte chemoattractant protein-1 as 129/B6-ApoE(-/-) controls, had decreased expression of important T cell-related genes, such as IFNgamma-inducible protein-10 and I-A(b), and lower plasma triglycerides and glucose. These results indicate a role for T cells and IFNgamma, a prototypical T-helper 1 cytokine, in regulation of the inflammatory response that accompanies obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2740384PMC
http://dx.doi.org/10.1161/CIRCRESAHA.108.177105DOI Listing

Publication Analysis

Top Keywords

immunity obesity
8
tumor necrosis
8
necrosis factor-alpha
8
factor-alpha monocyte
8
monocyte chemoattractant
8
chemoattractant protein-1
8
inflammatory
5
obese
5
cells
5
interferon-gamma th1
4

Similar Publications

Obesity, often driven by high-fat diets (HFD), is a major global health issue, necessitating effective preventive measures. Tetragonia tetragonoides, a plant with known medicinal properties, has not been extensively studied for its effects on HFD-induced obesity and related genetic changes in mice. This study explores the impact of Tetragonia tetragonoides extract (TTE; 300 mg/kg) on obesity-related traits in C57BL/6J male mice, with a focus on transcriptomic changes in the liver and white adipose tissue (WAT).

View Article and Find Full Text PDF

Advancement in synthetic gene circuits engineering: An alternative strategy for microRNA imaging and disease theranostics.

Biotechnol Adv

January 2025

Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang 712046, China. Electronic address:

Gene circuits, which are genetically engineered systems designed to regulate gene expression, are emerging as powerful tools in disease theranostics, especially in mammalian cells. This review explores the latest advances in the design and application of gene circuits for detecting and treating various diseases. Synthetic gene circuits, inspired by electronic systems, offer precise control over therapeutic gene activity, allowing for real-time, user-defined responses to pathological signals.

View Article and Find Full Text PDF

Prader-Willi syndrome (PWS) is a genetic disorder associated with baseline respiratory impairment caused by multiple contributing etiologies. While this may be expected to increase the risk of severe COVID-19 infections in PWS patients, survey studies have suggested paradoxically low disease severity. To better characterize the course of COVID-19 infection in patients with PWS, this study analyses the outcomes of hospitalizations for COVID-19 among patients with and without PWS.

View Article and Find Full Text PDF

Background: The relationship between gut microbiota composition, lifestyles, and colonic transit time (CTT) remains poorly understood. This study investigated associations among gut microbiota profiles, diet, lifestyles, and CTT in individuals with subjective constipation.

Methods: We conducted a secondary analysis of data from our randomized clinical trial, examining gut microbiota composition, CTT, and dietary intake in baseline and final assessments of 94 participants with subjective constipation.

View Article and Find Full Text PDF

Background And Objectives: the COVID-19 pandemic underscored the necessity of understanding the factors influencing susceptibility and disease severity, as well as a better recovery of functional status, especially in postcritical patients. evidence regarding the efficacy of vitamin D supplementation in reducing the severity of COVID-19 is still insufficient due to the lack of primary robust trial-based data and heterogeneous study designs. the principal aims of our study were to determine the impact of vitamin D deficiency or insufficiency on complications during intensive care unit (icu) stay, as well as its role in muscle mass and strength improvement as well as morphofunctional recovery during a multispecialty 6-month follow-up program based on adapted nutritional support and specific physical rehabilitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!